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Introduction 
 

The test is a job knowledge test designed to cover the major knowledge areas 
necessary to perform the job.  This Guide contains strategies to use for taking 
tests and a study outline, which includes knowledge categories, major job 

activities, and study references. 
 
Test Session 

 
It is important that you follow the directions of the Test Administrator exactly. If 
you have any questions about the testing session, be sure to ask the Test 
Administrator before the testing begins. During testing, you may NOT leave the 
room, talk, smoke, eat, or drink. Since some tests take several hours, you should 
consider these factors before the test begins. 

 
All cellular/mobile phones, pagers or other electronic equipment will NOT 
be allowed in the testing area. 

 
All questions on this test are multiple-choice or hot spot questions. Multiple 
choice questions have four possible answers. Hot spot questions have a picture, 
and you must click the correct spot on the picture to answer the question. All 
knowledge tests will be taken on the computer. For more information on this, 
please see the next section of this study guide on Computer Based Testing. 
 
The test has a 3 hour time limit.  
 
A scientific calculator will be provided for you to use during the test. You 
will be given the choice between the following calculators: Casio fx-115es 
plus or Texas Instruments TI-36X.                

 
You will NOT be able to bring or use your own calculator during testing. 
 
You will receive a Test Comment form so that you can make comments about 
test questions. Write any comments you have and turn it in with your test when 
you are done. 

 
Study Guide Feedback 

 
At the end of this Guide you have been provided with a Study Guide Feedback 
page. If a procedure or policy has changed, making any part of this Guide 
incorrect, your feedback would be appreciated so that corrections can be made.  
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Computer Based Testing 
 

Taking an SCE knowledge test on the computer is simple. You do not need any 
computer experience or typing skills. You will only use the keyboard to enter your 
candidate ID and password. You’ll answer all questions by pressing a single button on 
the mouse.  
 

Log in Screen 
 
You will be seated at a testing station. When you are seated, the computer will prompt 
you to enter the candidate ID and password you received in your invitation e-mail. You 
MUST have your candidate ID and password or you will be unable to take the test. Once 
you have confirmed your identity by entering this information, you will see a list of tests 
available to you.  

 
Sample/Tutorial 
 
Before you start your actual test, a Sample/Tutorial Test is provided to help you become 
familiar with the computer and the mouse. From the list of exams that appear when you 
complete the log in, you will select Sample/Tutorial. You will have up to 10 minutes to 
take the Sample/Tutorial Test. The time you spend on this Sample Test does NOT count 
toward your examination time. Sample questions are included so that you may practice 
answering questions. In the Sample/Tutorial Test, you will get feedback on your 
answers. You will not receive feedback on your actual test. 
 

Example 
 
During the test, you may see several different types of items. Many of the questions will 
be multiple choice items. A few items will be pictures, where you’ll have to click the spot 
on the picture that answers the question. Those picture questions are known as “Hot 
Spot” questions. More information on each type is below. 
 
Overall Test Information 
 

When you begin the test, you can see the total time allowed for completion 
displayed at the top of the screen. You can scroll up to see that information at 
any time during the test.  

  
You can change your answers at any time during the test until the time runs out, 
or you click the “Submit” button. Once you click Submit, you cannot change your 
answers. 
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Multiple Choice Questions 
 
To answer each multiple choice question, you should move the mouse pointer over the 
circle (radio button) next to the answer of your choice, and click the left mouse button.  
 
A sample is shown below: 
 

1. In order to answer each question, first read the question and determine the 

response that best answers the question. Put the mouse pointer directly over 

the circle corresponding to that response. 

 

 
 
2. While the pointer is over the circle corresponding to the best answer, click the 

left mouse button. 

 

 
3. The answer you selected should now have a green dot in the circle. If you need 

to select an alternate answer, simply move the pointer over that circle, and click 

again.    
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Hot Spot Questions 
 
To answer each Hot Spot question, you should move the mouse pointer over the part of 
the image that best answers the question, and click the left mouse button. You will see a 
pointer appear in that spot. If you want to change your answer, simply move the mouse 
pointer to a new area on the picture and click again. The pointer will move to the new 
spot.  
 
A sample is shown below: 
 

1.  In order to answer each question, first read the question and determine the 

place on the image that best answers the question. The pointer that will 

indicate your answer can always be seen in the bottom left of the image. It 

looks like this: 

 

           

Put the mouse pointer directly over the spot on the image you want to select, and 
click the left mouse button.  
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2. The pointer will move from the bottom left of the image and appear over the 

spot you selected. 

 
 

3. To change your answer, simply move the mouse pointer to the new spot, and 

click again. The pointer graphic will move to the new spot you’ve selected. In 

order for your answer to be considered be correct, the center of the pointer  

( • ) must be over the correct spot on the graphic.
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Test Taking Strategies 
 

Introduction 

The test contains multiple-choice questions. The purpose of this section is to help you to 

identify some special features of a multiple-choice test and to suggest techniques for you 

to use when taking one. 

Your emotional and physical state during the test may determine whether you are 

prepared to do your best. The following list provides common sense techniques you can 

use before the test begins. 

Technique Remarks 

Be confident  - If you feel confident about passing the test, you may lose   

some of your anxiety. 

- Think of the test as a way of demonstrating how much you 

know, the skills you can apply, the problems you can solve, 

and your good judgment capabilities. 

Be punctual  -  Arrive early enough to feel relaxed and comfortable before 

the test begins. 

Concentrate -  Try to block out all distractions and concentrate only on the 

test. You will not only finish faster but you will reduce your 

chances of making careless mistakes. 

 -  If possible, select a seat away from others who might be 

distracting. 

 - If lighting in the room is poor, sit under a light fixture. 

 -  If the test room becomes noisy or there are other 

distractions or irregularities, mention them to the Test 

Administrator immediately. 
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Budget your times -  Pace yourself carefully to ensure that you will have enough 

time to complete all items and review your answers. 

Read critically -  Read all directions and questions carefully.  

 -  Even though the first or second answer choice looks good, 
be sure to read all the choices before selecting your 
answer. 

Make educated  -  Make an educated guess if you do not know the answer or 
guesses   if you are unsure of it. 

Changing answers - If you need to change an answer, be sure to erase your 
previous answer completely. On the computer, be sure that 
the new answer is selected instead of the old one. 

Return to difficult - If particular questions seem difficult to understand, make a  
questions  note of them, continue with the test and return to them 

later. 
 
Double-check math  -  Use scratch paper to double check your 
calculations  mathematical calculations. 

Review  -  If time permits, review your answers. 

- Do the questions you skipped previously. 

- Make sure each answer bubble is completely filled in. 

Erase any stray marks on your answer sheet. When testing 

on the computer, make sure each multiple choice question 

has a green dot next to the correct answer. 

 
Remember the techniques described in this section are only suggestions. You should 
follow the test taking methods that work best for you. 
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Job Knowledge Categories and Study References 
 

Below are the major job knowledge areas (topics) covered on the 2774 Test Technician 
Test. Listed next to each knowledge category is the number of items on the exam that 
will measure that topic. You can use this information to guide your studying.  Some 
exams also contain additional pretest items.  Pretest items will appear just like all of the 
other items on your exam, but they will not affect your score.  They are an essential part 
of ensuring the 2774 Test Technician Test remains relevant to successful performance 
of the job.  
 
There are a total of 101 items on the test and the passing score is 75%.  
 
              A. Electrical Theory (75 items) 

Includes basic AC/DC theory, Ohm's law, Watt’s law, Kirchhoff's Law, 

circuit diagrams, electrical symbols, and calculations for electrical circuits. 

              B. Electronic Theory (15 items) 
                       Includes electronic components and electronic symbols. 
 
              C. Mathematics (8 items) 

Trigonometry – knowledge of sine, cosine, tangent ratios, and their 
application in electrical theory (e.g., phasor angle); this includes the ability 
to solve triangle problems using trigonometric functions. 

 
              D. Test Instruments and Procedures (3 items) 
                        Includes electrical measurement, AC meters, and basic instrument use.  
 

Study References 
 

1. https://www.allaboutcircuits.com/textbook/ 

 
2. https://www.allaboutcircuits.com/worksheets/ 

 
3. https://www.allaboutcircuits.com/video-lectures/ 

 
4. https://www.allaboutcircuits.com/technical-articles/ 

 
5. The Test Technician Study Guide Workbook (published by SCE Power 

Production Training) can be found as an appendix to this document.  

 
Important Note: The knowledge categories described below are different from the 
knowledge categories that appear in the Test Technician Study Guide Workbook 
provided through SCE PPT. Please refer to the knowledge categories in this guide, not 
the knowledge categories in the workbook, for relevance to the test.  
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Study Guide Feedback 
  
Please use this page to notify us of any changes in policies, procedures, or 
materials affecting this 
guide. Once completed, return to: 
 
 Southern California Edison 
 Human Resources – Testing 
 G.O. 5, 1st Floor 
 1515 Walnut Ave.  
 Rosemead, CA 91770 
 
 Test Name:         2774 Test Technician Test 
                  
    

Page   Comments 
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Study Guide Outline 

Job Knowledge Categories 

 

Below are the major job knowledge categories that are covered on 
the test.  

A. Electrical Theory 

Includes AC and DC theory, Ohm's law, wiring and circuit 
diagrams, electrical symbols, 3 phase power theory and electrical 
terminology  

B. Electronic Theory 

Includes basic electronic theory, circuitry, electronic symbols, solid 
state theory, and knowledge of diodes, rectifiers, transistors, 
resonance, and logic symbols 

C. Mathematics 

Includes algebra, geometry, trigonometry, and phasoring 

D. Test Instruments and Procedures 

Refer to standard test procedures and accuracy requirements and 
the use of electrical test instruments, meters, and tools.  

E. Equipment Knowledge 

Refers to knowledge of electrical equipment including protective 
relays, meters, recording instruments, supervisory control 
equipment, transformers, voltage regulators, synchronous 
condensers, power circuit breakers, carrier current equipment, and 
other electrical equipment tested by the Test Technician 

F. Safety 
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Includes knowledge of safety procedures, electrical hazards, first 
aid, fire fighting, and safe operating procedures, including 
clearance procedures  

 

Study References 

  

Below is a combined listing of the study references for material 
covered on the test. The materials listed in this Guide are available 
from public/university libraries, general bookstores, university or 
technical bookstores. Department reference material (e.g., operating 
letters, on-line computer systems, etc.) again will depend on 
project.  

KNOWLEDGE CATEGORY A — ELECTRICAL THEORY 

Basic Electricity 
Bureau of Navy Personnel, Dover Publications 

Delmar’s Standard Textbook of Electricity 
Delmar Cengage Learning, by Stephen L. Herman 

Vector Analysis 
Industrial Press, Stroud and Booth 
 

KNOWLEDGE CATEGORY B — ELECTRONIC THEORY 

Basic Solid State Electronics 
Van Valkenburgh, Nooger & Neville. Inc 
Substation Training School 

Basic Electronics  
Bernard Grob, McGraw Hill Book Co. 
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Electronic Principles 

Albert Paul Malvino, Glencoe Macmillan/McGraw-Hill  

 

KNOWLEDGE CATEGORY C — MATHEMATICS 

Basic Mathematics For Electronics  
Nelson M. Cooke, McGraw Hill Book Co.  

Working with Numbers: Refresher Algebra 
Janies T. Shea, STECK-VAUGN 

Geometry: A Straightforward Approach  
Martin M. Zuckerman, Morton Publishing Co.  

Trigonometry the Easy Way 
Douglas Downing, Barron's Education Service  

KNOWLEDGE CATEGORY D — TEST INSTRUMENTS AND 

PROCEDURES 

Basic Electricity 
Bureau of Navy Personnel, 
Substation Training School 

Delmar’s Standard Textbook of Electricity 
Delmar Cengage Learning, by Stephen L. Herman 
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Math 

(General Physics) 
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Trigonometry 

 

Trigonometry is the study of angles and the relationship between 
angles and the lines that form them. All trigonometry is based on a 
right-angled triangle. The most important application of 
trigonometry is the solution of triangles based on the sizes of the 
angles and the lengths of the sides. This lesson explains: 

• Sines 

• Cosines 

• Tangents 

Objectives 

After successfully completing this lesson, you will be able to: 

1. Define the sine, cosine, and tangent ratios. 

2. Graph the sine and cosine functions. 

3. Solve triangle problems using trigonometric functions. 

Key Words 

Sin — Abbreviation of sine. 

Cos — Abbreviation of cosine. 

Tan — Abbreviation of tangent. 
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Sine 

The lengths of the sides of a right triangle are related to the size of the 

angle . This is the basis for trigonometric (trig) functions. 

         
 

        Figure 28. Right Triangle for Trig Functions 
 

The sides of the triangle in Figure 28 are labeled based on the angle 
about which you are talking, A or  (theta) in this case. The side 
opposite  is labeled “a.” The side next to or adjacent to  is labeled 
“b.” The hypotenuse is still called the hypotenuse and is labeled 
“c.” The angle opposite the hypotenuse, or the right angle (90°), is 
labeled “C.” 

The ratio of the opposite side to the hypotenuse is called the sine of angle . 
Sine is abbreviated sin. 

 sin  = 
length of  opposite side

length of  hypotenuse
 

or 

 sin  = 
a

c
 

The reciprocal of sin , the length of the hypotenuse divided by the 
length of the opposite side, is called the cosecant, or CSC . 

If you know any two parts of the sine equation, you can easily 
calculate the third. If you know the sine of an angle and want to 
find the angle itself, you can write this as sin-1 or arcsin. 
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If you calculate the value of sin  for various s from 0° to 360°, you 
could plot them as in Figure 29. This is called a sine curve. Notice 
that sin  is never greater than +1 or less than -1. The values of all 
trig functions for angles from 0° to 90° have been calculated and are 
listed in standard trig function tables. As with log tables, fractions 
of degrees can be interpolated.  

 
 

Figure 29. Sine Curve 
 

Look at a sample problem: A plank 21 ft. long is used to roll a 
barrel onto a truck. If the truck bed is 5.9 ft. above the ground, what 
angle does the plank form with the ground? 

Solution: 

 

 sin  = 
5.9

21
 

      = sin-1
5.9

21
 

  = sin-1 0.2809 

From standard trig tables, or using a calculator with trig functions, 
sin-1 16.3° = 0.2807, which is very close to 0.2809. 

Therefore    16.3° 

It is usually helpful to draw a simple diagram of problems. 
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Cosine 

The ratio of the adjacent side to the hypotenuse is called the cosine of . 
Cosine is abbreviated cos. 

 cos  = 
length of  adjacent side

length of  hypotenuse
 

or 

 cos  = 
b

c
 

The reciprocal of the cos , the length of the hypotenuse divided by 
the length of the adjacent side, is called the secant, or sec . See 
Figure 28, repeated below. 

          
 

         Figure 28. Right Triangle for Trig Functions 
 

The angle whose cosine is known is written cos-1 or arccos.  

A plot of cos  for  from 0° to 360° looks like Figure 30. Notice that 
cos  is never larger than +1 or less than -1. 
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Figure 30. Cosine Curve 

 

Look at a sample problem: How high will a 35 ft. long ladder reach 
up a vertical wall if it makes an angle of 18.2° with the wall? 

Solution: 

 

 cos 18.2° = 
b

35
 

        b = 35 cos 18.2° 

From standard trig tables, or using a calculator with trig functions, 
cos 18.2° = 0.9500. 

        b = 35 (0.95) 

   = 33.25 ft. 
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Tangent 

The ratio of the opposite side to the adjacent side is called the tangent of . 
Tangent is abbreviated tan. 

 tan  = 
length of  opposite side

length of  adjacent side
 

or 

 cos  = 
O

A
 

 

The reciprocal of tan , the length of the adjacent side divided by 

the length of the opposite side, is called the cotangent, or cot . See 
Figure 28, repeated below. 

         
 

         Figure 28. Right Triangle for Trig Functions 
 

The angle whose tangent is known is written tan-1 or arctan. The 
tangents of 90° and 270° are undefined. 
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Look at a sample problem: The shadow of a stack is 293 ft. long 
when the sun is at 41° elevation. Find the height of the stack. 

Solution: 

 

 

 tan 41° = 
a

293
 

       a = 293 tan 41° 

From standard trig tables, or using a calculator with trig functions, 
tan 41° = 0.8693. 

        a = 293 (0.8693) 

   = 254.7 ft. 
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Laws of Sines and Cosines 

 

The solutions of all triangles can be grouped into cases according to 
the information given about the angles and sides. 

Section 1. Law of Sines 

The Law of Sines states that in any triangle ABC, the sides are 
proportional to the sines of the opposite angles. See Figure 31 for an 
example of a typical triangle ABC. 

          
 

     Figure 31. Typical Triangle ABC 
 

 sin A = 
d

b
 sin B = 

d

a
 

therefore d = b sin A d =  a sin B  

Since  d = d, it is obvious then that to solve for b: 

d 
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 b sin A = a sin B 

Dividing by sin A 

 
b  sin A

sin A
 = 

a  sin B

sin A
 

        b = 
a  sin B

sin A
 

Dividing by sin B 

 
b

sin B
 = 

a  sin B

sin A  sin B
 

or 
b

sin B
 = 

a

sin A
 

The Law of Sines is normally written as shown below: 

 
a

sin A
 = 

b

sin B
 = 

c

sin C
 

Derivations can be obtained from the above relationships as 
follows: 

a

sin A
 = 

b

sin B
 

b

sin B
 = 

c

sin C
 

c

  sin C
 = 

a

sin A
 

a sin B = b sin A     b sin C = c sin B          a sin C = c sin A 

sin A = 
a  sin B

b
      sin B = 

bsin C

c
   sin C = 

c  sin A

a
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Section 2. Law of Cosines 

The Law of Cosines states that in any triangle ABC, the square of 
any side is equal to the sum of the squares of the other two sides 
diminished by twice the product of the other two sides and the 
cosine of the included angle. See Figure 31, repeated below. 

Using the Pythagorean Theorem in the left triangle: 

 b2 = d2 + (AD)2 

             
 

     Figure 31. Typical Triangle ABC 
 

In the triangle on the right side: 

 sin B = 
d

a
 cos B = 

DB

a
 

then d = a sin B DB =  a cos B  

Then AD = AB - DB = c - a cos B 

and b2 = d2 + (AD)2 = (a sin B)2 + (c - a cos B)2 

or b2 = a2 sin2 B + (c2 -2ac cos B + a2 cos2 B) 

 b2 = a2 sin2 B + c2 -2ac cos B + a2 cos2 B 

 b2 = a2 (sin2 B + cos2B) + c2 - 2ac cos B 

It can be shown from the Pythagorean Theorem that: 

(sin2 B + cos2 B) = 1 

Therefore: b2 = a2 + c2 - 2ac cos B 

d 
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The relationships for finding other values can be derived in the 
above manner to yield: 

 a2 = b2 + c2 - 2bc cos A 

 b2 = a2 + c2 - 2ac cos B 

 c2 = a2 + b2 - 2ab cos C 

To determine unknown angles, the above relationships can be 
manipulated to yield the following equations: 

To find angle C: 

 c2 = a2 + b2 - 2ab cos C 

 0 = a2 + b2 - c2 - 2ab cos C 

     2ab cos C = a2 + b2 - c2 

   
2  ab cos C

2 ab
 = 

a
2

   b
2

   c
2

2  ab
 

        cos C = 
a

2
   b

2
   c

2

2  ab
 

Similarly, 

        cos A = 
b

2
   c

2
   a

2

2  bc
 

        cos B = 
a

2
   c

2
   b

2

2  ac
 

 

NOTE: In general, the Law of Sines is used when two angles and 
one side or two sides and an angle opposite one of them are 
known, while the Law of Cosines is used when two sides and the 
included angle or three sides are known. 

Practice problems using the trig functions are in the next section. 
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Practice Problems 

Use standard trig table functions or, if you have one, a calculator 
with trig functions, to solve these problems. Answers are at the end 
of the module. 

1. A road makes an angle of 7.4° with the horizontal. Find the 
increase in elevation (in feet) if you drive one mile. (One mile = 
5280 ft.) 

 

 

 

 

2. A 30 ft. ladder is placed against a vertical wall so that the foot of 
the ladder is 6.5 ft. from the wall. What angle does the ladder 
make with the ground? How high on the wall does the ladder 
reach? 

 

 

 

 

3. Given the following, find the angles: 

 a. arcsin 0.1564 b. arccos 0.301 

 c. arctan 0.419 d. sin-1 0.0262 

 e. tan-1 0.0115 f. tan-1 2.05 
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4. A platform is 10 ft. above floor level. A ramp is to be built from 
the floor to the platform. If the ramp is to make an angle with 
the floor of 14°, how far from the platform must the ramp start? 
How long must the ramp be? 

 

 

 

 

 

1. A tower is braced by a cable fastened 15 ft. below the top and to an anchor 
that is 65 ft. from the base of the tower. If the brace makes an angle of 70° 
with the ground, how high is the tower? 
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Electronics 
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Transformer and Diode  

Rectifier Circuits 

 

A rectifier diode is ideally a closed switch when forward-biased 
and an open switch when reverse-biased. Because of this, it is 
useful for converting alternating current to direct current. This 
chapter discusses three basic rectifier circuits called the half-wave 
rectifier, the full-wave rectifier, and the bridge rectifier. 

The Input Transformer 

Power companies in the United States supply a nominal line 
voltage of 115 V rms at a frequency of 60 Hz. The actual voltage 
coming out of a power outlet may vary from 105 V to 125 V rms, 
depending on the time of day, locality, and other factors. Recall that 
the relation between the rms value and the peak value of a sine 
wave is given by 

     Vrms = 0.707Vp                (4-1) 

This equation says that the rms voltage equals 70.7 percent of the 
peak voltage. Recall what rms value means. This is the equivalent 
dc voltage that would produce the same amount of power over one 
complete cycle. 

Basic Equation 

Line voltage is too high for most of the devices used in electronics 
equipment. This is why a transformer is commonly used in almost 
all electronics equipment. This transformer steps the ac voltage 
down to lower levels that are more suitable for use with devices 
like diodes and transistors. 
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Figure 4-1 shows an example of a transformer. The left coil is called 
the primary winding and the right coil is called the secondary winding. 
The number of turns on the primary winding is N1, and the number 
of turns on the secondary winding is N2. The vertical lines between 
the primary and secondary windings indicate that the turns are 
wrapped on an iron core. 

 
                   Figure 4-1                      Figure 4-2 
            Unloaded Transformer           Loaded Transformer 

 
With this type of transformer, the coefficient of coupling k 
approaches one, which means tight coupling exists. In other words, 
all the flux produced by the primary winding cuts through the 
secondary winding. The voltage induced in the secondary winding 
is given by 

V
N

N
V2

2

1
1   (4-2) 

The voltages in this equation may be either rms or peak voltages. 
Just be consistent and use rms for both, or peak for both. 

Step-Up Transformer 

When the secondary winding has more turns than the primary 
winding, more voltage is induced in the secondary than in the 
primary. In other words, when N2/N1 is greater than one, the 
transformer is referred to as a step-up transformer. If N1 = 100 turns 
and N2 = 300 turns, the same flux cuts through three times as many 
turns in the secondary as in the primary winding. This is why the 
secondary voltage is three times as large as the primary voltage. 

Step-Down Transformer 

When the secondary winding has fewer turns than the primary 
winding, less voltage is induced in the secondary than in the 
primary. In this case, the turns ratio, N2:N1, is less than one, and the 
transformer is called a step-down transformer. If N1 = 100 turns 
and N2 = 50 turns, the same flux cuts through half as many turns in 
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the secondary as in the primary winding, and the secondary 
voltage is half the primary voltage. 

Effect on Current 

Figure 4-2 shows a load resistor connected across the secondary 
winding. Because of the induced voltage across the secondary 
winding, a current exists. If the transformer is ideal (k = 1 and no 
power is lost in the windings or the core), the output power equals 
the input power: 

P2 = P1 

or 

V2I2 = V1I1 

We can rearrange the foregoing equation as follows: 

I

I

V

V

1

2

2

2

  

But Eq. (4-2) implies that V2/V1 = N2/N1. Therefore, 

I1

I2

N2

N1

 

or 

I
N

N
I

1

2

1 2
   (4-3) 

An alternative way to write the foregoing equation is 

I
N

N
I

2

1

2
1

   (4-4) 

Notice the following. For a step-up transformer, the voltage is 
stepped up but the current is stepped down. On the other hand, for 
a step-down transformer, the voltage is stepped down but the 
current is stepped up. 
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Example 4–1 

Suppose the voltage from a power outlet is 120 V rms. What is the 
peak voltage? 

Solution 

Using algebra, we can rewrite Eq. (4-1) in this equivalent form: 

Vp
Vrms
0 707.

 

Now, substitute the rms voltage and calculate the peak voltage: 

Vp  
120

0 707
170

V
V

.
 

This tells us that the sinusoidal voltage out of the power outlet has 
a peak value of 170 V. 

Example 4–2 

A step-down transformer has a turns ratio of 5:1. If the primary 
voltage is 120 V rms, what is the secondary voltage? 

Solution 

Divide the primary voltage by 5 to get the secondary voltage: 

V2

120

5
24 

V
V  

Example 4–3 

Suppose a step-down transformer has a turns ratio of 5:1. If the 
secondary current is 1 A rms, what is the primary current? 

Solution 

With Eq. (4-3), 

I1

1

5
0 2 

A
A.  



 

Power Production Test Technician April, 2010  

Training  Page 25 

As a check on this answer, use your common sense as follows, This 
is a step-down transformer, which means the current is stepped up 
going from primary to secondary, equivalent to saying the current 
is stepped down as we go from the secondary to the primary. This 
means the primary current is five times smaller than the secondary 
current. Whenever possible, you should check that your answers 
are logical because it is easy to make a mistake with equations. 

The Half-Wave Rectifier 

The simplest circuit that can convert alternating current to direct 
current is the half-wave rectifier, shown in Fig. 4-3. Line voltage 
from an ac power outlet is applied to the primary winding of the 
transformer. Usually, the power plug has a third prong to ground 
the equipment. Because of the turns ratio, the peak voltage across 
the secondary winding is 

V
N

N
Vp p2

2

1

1  

Recall the dot convention used with transformers. The dotted ends 
of a transformer have the same polarity of voltage at any instant in 
time. When the upper end of the primary winding is positive, the 
upper end of the secondary winding is also positive. When the 
upper end of the primary winding is negative, the upper end of the 
secondary winding is also negative. 

Here is how the circuit works. On the positive half cycle of primary 
voltage, the secondary winding has a positive half sine wave across 
it. This means the diode is forward-biased. However, on the 
negative half cycle of primary voltage, the secondary winding has a 
negative half sine wave. Therefore, the diode is reverse-biased. If 
you use the ideal-diode approximation for an initial analysis, you 
will realize that the positive half cycle appears across the load 
resistor, but not the negative half cycle. 

For instance, Fig. 4-4 shows a transformer with a turns ratio of 5:1. 
The peak primary voltage is  
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Vp1

120

0 707
170 

V
V

.
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                                     Figure 4-3                                         Figure 4-4 
                             Half-wave Rectifier                         5:1 Turns Ratio 

 
The peak secondary voltage is 

Vp2
5

 
170V

34V  

With the ideal-diode approximation, the load voltage has a peak 
value of 34 V. 

Figure 4-5 shows the load voltage. This type of waveform is called 
half-wave signal because the negative half cycles have been clipped 
off or removed. Since the load voltage has only a positive half cycle, 
the load current is unidirectional, meaning that it flows only in one 
direction. Therefore, the load current is a pulsating direct current. It 
starts at zero at the beginning of the cycle, then increases to a 
maximum value at the positive peak, then decreases to zero where 
it sits for the entire negative half cycle. 

 
Figure 4-5 

Half-wave Signal 
 

Period 

The frequency of the half-wave signal is still equal to the line 
frequency, which is 60 Hz. (In Europe, line frequency is 50 Hz.) 
Recall that the period, T, equals the reciprocal of the frequency. 
Therefore, the half-wave signal has a period of 

T
f

   
1 1

60 Hz
0.0167s 16.7ms  
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This is the amount of time between the beginning of a positive half 
cycle and the start of the next positive half cycle. This is what your 
would measure if you looked at a half-wave signal with an 
oscilloscope. 

DC or Average Value 

If you connect a dc voltmeter across the load resistor of Figure 4-5, 

it will indicate a dc voltage of Vp/, which may be written as 

Vdc = 0.318Vp                     (4-5) 

where Vp is the peak value of the half-wave signal across the load 
resistor. For instance, if the peak voltage is 34 V, the dc voltmeter 
will read 

Vdc = 0.318(34 V) = 10.8 V 

This dc voltage is sometimes called the “average” value of the half-
wave signal because the voltmeter reads the average voltage over 
one complete cycle. The needle of the voltmeter cannot follow the 
rapid variations of the half-wave signal, so the needle settles down 
on the average value, which is 31.8 percent of the peak value. (The 
31.8 percent can be proved with calculus.) 

Approximations 

Because the secondary voltage is much greater than the knee 
voltage, using the second approximation will improve the analysis 
only slightly. If we use the second approximation, the half-wave 
signal has a peak of 33.3 V. Furthermore, since the bulk resistance 

of a 1N4001 is only 0.23 compared to a load resistance of 1 k , 
there is no increase in accuracy when using the third 
approximation. In conclusion, either the ideal diode or the second 
approximation is adequate in analyzing this circuit. 

Example 4–4 

In Europe, a half-wave rectifier has an input voltage of 240 V rms 
with a frequency of 50 Hz. If the step-down transformer has a turns 
ratio of 8:1, what is the load voltage? 

Solution 

You can divide 240 V by 0.707 to get the answer. Here is an 
alternative way to get the peak voltage. Since the rms voltage is 
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twice as large as previous examples, the peak voltage is twice as 
large as before: 

Vpl = 2(170 V) = 340 V 

Because of the 8:1 step down, the secondary voltage has a peak 
value of  

Vp2
8

 
340V

42.5V  

Ignoring the diode drop means that the load voltage is a half-wave 
signal with a peak value of 42.5 V. 

The period of the rectified output voltage is slightly longer: 

T   
1

50Hz
0.02s 20ms  

This is what you would measure with an oscilloscope. 

The Full-Wave Rectifier 

Figure 4-6 shows a “full-wave rectifier.” Notice the grounded 
center tap on the secondary winding. Because of this center tap, the 
circuit is equivalent to two half-wave rectifiers. The upper rectifier 
handles the positive half cycle of secondary voltage, while the 
lower rectifier handles the negative half cycle of secondary voltage. 
In other words, D1 conducts on the positive half cycle and D2 
conducts on the negative half cycle. Because of this, the rectified 
load current flows during both half cycles. Furthermore, this load 
current flows in one direction only. 

 

Figure 4–6 
Full-wave Rectifier 
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For instance, Fig. 4-7 shows a transformer with a turns ratio of 5:1. 
The peak primary voltage is still equal to 

 

 

Figure 4–7 
Example of Full-wave Rectifier 

Vp1  
120V

0.707
170V  

The peak secondary voltage is 

Vp2  
170V

5
34V  

Because of the grounded center tap, each half of the secondary 
winding has a sinusoidal voltage with a peak of only 17 V. 
Therefore, the load voltage has an ideal peak value of only 17 V 
instead of 34 V. This factor- of-two reduction is a characteristic of 
all full-wave rectifiers. It is a direct result of using a grounded 
center tap on the secondary winding. 

Figure 4-8 shows the load voltage. This type of waveform is called a 
full-wave signal. It is equivalent to inverting or flipping the 
negative half cycles of a sine wave to get positive half cycles. 
Because of Ohm's law, the load current is a full-wave signal with a 
peak value of 

I p  
17V

k
17mA

1 
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Figure 4–8 
Full-wave Signal 
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DC or Average Value 

If you connect a dc voltmeter across the load resistor of Fig. 4-7, it 

will indicate a dc voltage of 2Vp/, which is equivalent to 

                       Vdc = 0.636Vp                (4-6) 

where Vp  is the peak value of the half-wave signal across the load 

resistor. For instance, if the peak voltage is 17 V, the dc voltmeter 
will read 

Vdc = 0.636(17 V) = 10.8 V 

This dc voltage is the average value of the full-wave signal because 
the voltmeter reads the average voltage over one complete cycle. 

Output Frequency 

The frequency of the full-wave signal is double the input 
frequency. Why? Recall how a complete cycle is defined. A 
waveform has a complete cycle when it repeats. In Fig. 4-8, the 
rectified waveform begins repeating after one half cycle of the 
primary voltage. Since line voltage has a period, T1

, of 

T
f

1

1
   

1

60Hz
0.0167s 16.7ms  

The rectified load voltage has a period, T2
, of 

T2  
16.7ms

2
8.33ms  

The frequency of the load voltage therefore equals 

f
T

2

2

  
1 1

8.33ms
120Hz                    

This says the output frequency equals two times the input 
frequency. In symbols, 

f fout in 2     (4-7) 

This doubling of the frequency is a characteristic of all full-wave 
rectifiers. It is a direct result of using two diodes, one to rectify the 
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positive half cycle of input voltage and the other to rectify the 
negative half cycle of input voltage. Visually, the effect is to invert 
the negative half of the input voltage to get a full-wave signal. 

Again, notice the following about the use of diode approximations. 
Because the secondary voltage is much greater than the knee 
voltage, the second approximation results in a full-wave output 
voltage with a peak value of 16.3 V instead of 17 V, Once more, the 
small bulk resistance of a 1N4001 has almost no effect. In 
conclusion, either the ideal diode or the second approximation is 
adequate in analyzing most full-wave circuits. The only time you 
would consider using the third approximation is when the load 
resistance is small. 

Example 4–5 

 Suppose the full-wave rectifier of Fig, 4-7 has an input voltage of 
240 V rms with a frequency of 50 Hz. If the step-down transformer 
has a turns ratio of 8:1, what is the load voltage? 

Solution 

The peak primary voltage is the same as the previous example:: 

Vp1  340V  

The peak secondary voltage has the same peak value as before: 

Vp2  42.5V           

The center tap reduces this voltage by a factor of 2. In other words, 
the entire secondary winding has a sine wave across it with a peak 
value of 42.5 V. Therefore, each half of the secondary winding has a 
sine wave with only half this peak value, or approximately 21.2 V. 
Ignoring the diode drop means that the load voltage is a full-wave 
signal with a peak value of 21.2 V. 

Also, the rectified output signal has a frequency of twice the input 
frequency. In this case, the output frequency is 

f = 2(50 Hz) = 100 Hz 
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The Bridge Rectifier 

Figure 4-9 shows a bridge rectifier. By using four diodes instead of 
two, this clever design eliminates the need for a grounded center 
tap. The advantage of not using a center tap is that the rectified 
load voltage is twice what it would be with the full-wave rectifier. 

 

Figure 4–9 
Bridge Rectifier 

Here is how it works. During the positive half cycle of line voltage, 
diodes D2 and D3 conduct; this produces a positive half cycle across 
the load resistor. During the negative half cycle of line voltage, 
diode D1 and D4 conduct; this produces another positive half cycle 
across the load resistor. The result is a full-wave signal across the 
load resistor. 

For instance, Fig. 4-10 shows a transformer with a turns ratio of 5:1. 
The peak primary voltage is still equal to 

Vp1  
120V

0.707
170V  

 

Figure 4–10 
Example of Bridge Rectifier 
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Figure 4-11 
Full-wave Signal 

The peak secondary voltage is still 

Vp2  
170V

5
34V  

Because the full secondary voltage is applied to the conducting 
diodes in series with the load resistor, the load voltage has an ideal 
peak value of 34 V, twice that of the full-wave rectifier discussed 
earlier. 

Figure 4-11 shows the ideal load voltage. As you see, the shape is 
identical to that of a full-wave rectifier. Therefore, the frequency of 
the rectified signal equals 120 Hz, twice the line frequency. Because 
of Ohm's law, the load current is a full-wave signal with a peak 
value of 

Ip 
34V

1k
 34mA  

There is a new factor to consider when using the second 
approximation with a bridge rectifier: there are two conducting 
diodes in series with the load resistor during each half cycle, 
Therefore, we must subtract two diode drops instead of only one, 
This means the peak voltage with the second approximation is 

Vp, = 34 V - 2(0.7 V) = 32.6 V 

The additional voltage drop across the second diode is one of the 
few disadvantages of the bridge rectifier, Also, there are two bulk 
resistances in series with the load resistance. But the effect is again 
negligible with the circuit values shown in Fig, 4-10. Unless you are 
designing a bridge rectifier, you will not normally use the third 
approximation because the bulk resistance is usually much smaller 
than the load resistance. 
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Most designers feel that having two diode drops and two bulk 
resistances is only a minor disadvantage. The advantages of the 
bridge rectifier include a full-wave output, an ideal peak voltage 
equal to the peak secondary voltage, and no center tap on the 
secondary winding. These advantages have made the bridge 
rectifier the most popular rectifier design. Most equipment uses a 
bridge rectifier to convert the ac line voltage to a dc voltage suitable 
for use with semiconductor devices. 

Example 4–6 

Suppose the bridge rectifier of Fig. 4-9 has an input voltage of 240 V 
rms with a frequency of 50 Hz. If the step-down transformer has a 
turns ratio of 8:1, what is the load voltage? 

Solution 

The peak primary voltage is the same as the previous example: 

Vp1  340V 

The peak secondary voltage has the same peak value as before: 

Vp2  42.5V  

This time, the entire secondary voltage is across two conducting 
diodes in series with the load resistor. Ignoring the diode drop 
means that the load voltage is a full-wave signal with a peak value 
of 42.5 V. Also, the frequency of the rectified output voltage is 100 
Hz. 

The Capacitor-Input Filter 

The load voltage out of a rectifier is pulsating rather than steady. 
For instance, look at Fig. 4-11. Over one complete output cycle, the 
load voltage increases from zero to a peak, then decreases back to 
zero. This is not the kind of dc voltage needed for most electronic 
circuits. What is needed is a steady or constant voltage similar to 
what a battery produce. To get this type of rectified load voltage, 
we need to use a “filter.” 
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Half-wave Filtering 

The most common type of filter is the capacitor-input filter shown in 
Fig. 4-12. To simplify the initial discussion of filters, we have 
represented an ideal diode by a switch. As you can see, a capacitor 
has been inserted parallel with the load resistor. Before the power is 
turned on, the capacitor is uncharged; therefore, the load voltage is 
zero. During the first quarter cycle of the secondary voltage, the 
diode is forward-biased. Ideally, it looks like a closed switch. Since 
the diode connects the secondary winding directly across the 

capacitor, the capacitor charges to the peak voltage, Vp .  

 

Figure 4–12 
Capacitor-input Filter 

Just past the positive peak, the diode stops conducting, which 
means the switch opens. Why? Because the capacitor has Vp .  volts 

across it. Since the secondary voltage is slightly less than Vp, the 
diode goes into reverse bias. With the diode now open, the 
capacitor discharges through the load resistance. But here is the key 
idea behind the capacitor-input filter: by deliberate design, the 
discharging time constant (the product of RL and C) is much greater 
than the period, T, of the input signal. Because of this, the capacitor 
will lose only a small part of its charge during the off time of the 
diode as shown in Fig. 4-13a. 

 

Figure 4–13 
(a) Half-wave Filtering        (b) Full-wave Filtering 
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When the source voltage again reaches its peak, the diode conducts 
briefly and recharges the capacitor to the peak voltage. In other 
words, after the capacitor is initially charged during the first 
quarter cycle, its voltage is approximately equal to the peak 
secondary voltage. This is why the circuit is sometimes called a peak 
detector. 

The load voltage is now almost a steady or constant dc voltage. The 
only deviation from a pure dc voltage is the small ripple caused by 
charging and discharging the capacitor. The smaller the ripple is, 
the better. One way to reduce this ripple is by increasing the 
discharging time constant, which equals RLC. 

Full-Wave Filtering 

Another way to reduce the ripple is to use a full-wave rectifier or 
bridge rectifier; then the ripple frequency is 120 Hz instead of 60 
Hz. In this case, the capacitor is charged twice as often and has only 
half the discharge time (see Fig. 4-13b). As a result, the ripple is 
smaller and the dc output voltage more closely approaches the 
peak voltage. From now on, our discussion will emphasize the 
bridge rectifier driving a capacitor-input filter because this is the 
most commonly used circuit. 

Brief Conduction of Diode 

In the unfiltered rectifiers discussed earlier, each diode conducts for 
half  a cycle. In the filtered rectifiers we are now discussing, each 
diode conducts for much less than half a cycle. When the power 
switch is first turned on, the capacitor is uncharged. Ideally, it takes 
only a quarter of a cycle to charge the capacitor to the peak 
secondary voltage. After this initial charging, the diodes turn on 
only briefly near the peak and are off during the rest of the cycle. In 
terms of degrees, the diodes turn on for only a couple of degrees 
during each cycle (half a cycle is 180).  

An Important Formula 

Whether you are troubleshooting, analyzing, or designing, you 
have got to know how to estimate the size of the ripple. Normally, 
the ripple is small compared to the peak secondary voltage. For 
most applications, the ripple is considered small when it is less 
than 10 percent of the load voltage. For instance, if the load voltage 
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is I5 V, the ripple in most filtered rectifiers will be less than 1.5 V 
peak-to-peak. 

Here is the formula for ripple expressed in terms of easily 
measured circuit values: 

 V
I

f
R 

C
 (4-8) 

 where  VR
 = peak-to-peak ripple voltage 

 I = dc load current 

 f = ripple frequency 

 C = capacitance 

The proof of Eq. (4-8) is too lengthy and complicated to show in 
this book. But the derivation assumes that the peak-to-peak ripple 
is less than 20 percent of the load voltage. Beyond this point, you 
cannot use Eq. (4-8) without encountering a lot of error. But as was 
already discussed earlier, the whole point of the capacitor-input 
filter is to produce a steady or constant dc voltage. For this reason, 
most designers deliberately select circuit values to keep the ripple 
less than 10 percent of the load voltage. In the circuits you 
encounter, you will find that the ripple is usually less than 10 
percent of the load voltage. 

DC Voltage 

To be successful in electronics, you have to learn the following 
basic idea: approximations are the rule, not the exception. Why? 
Because electronics is not an exact science like pure mathematics. 
The idea that you must always get exact answers is a false idea, a 
left-brain trap. For most of the work in electronics, approximate 
answers are adequate and even desirable. 

The situation is like an artist painting a picture. The best artist starts 
with the largest brush when beginning a painting. The artist then 
switches to a medium-sized brush to improve the picture, and, 
finally, may use the smallest brush to get the finest detail. No good 
artist ever uses a small brush all of the time. 

The three diode approximations are like an artist’s brushes. You 
should start with the ideal diode to get the big picture. In many 
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cases (trouble shooting, for instance), this will be all you need. 
Often, you will want to improve your analysis by using the second 
approximation (a lot of everyday work is done with this one). 
Finally, the third approximation may be best in some situations (if 
the circuit uses 1 percent resistors, for example). 
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First Approximation 

With the foregoing in mind, here is how the diode approximations 
affect the value of the load voltage. For an ideal diode and no 
ripple, the dc load voltage out of a filtered bridge rectifier equals 
the peak secondary voltage: 

V Vdc p 2  

This is what you want to remember when you are trouble-shooting 
or making a preliminary analysis of a filtered bridge rectifier. 

Second Approximation 

With the second approximation of a diode, we have to allow for the 
0.7 V across each diode. Since there are two conducting diodes in 
series with the load resistor, the dc load voltage with no ripple out 
of a filtered bridge rectifier is 

V Vdc p 2 1.4V  

Third Approximation 

In the third approximation, two bulk resistances are in the charging 
path of the capacitor. This complicates the analysis because the 
diode conducts briefly only near the peak. Fortunately, bulk 

resistances of rectifier diodes are typically less than 1 . Because of 
this, they usually have little or no effect on the load voltage. Unless 
you are designing a filtered bridge rectifier, you will not need to 
consider the effect of bulk resistance. (If you are designing the 
circuit, you will need to use advanced mathematics because you 
have to deal with an exponential function. The alternative is to 
build the circuit and arrive at circuit values by experiment. The 
main rule here is to keep the load resistance as large as possible 
compared to the bulk resistance.) 

There is one more improvement that we can use. We can include 
the effect of the ripple as follows: 

V V
V

dc withripple dc withoutripple

R

( ) ( ) 
2
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The idea here is to subtract half the peak-to-peak ripple to refine 
the answer slightly. Since peak-to-peak is usually less than 10 
percent, the improvement in the answer is less than 5 percent. 
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A Basic Guideline 

The resistors used in typical electronic circuits have tolerances of 

 5 percent. Sometimes, you will see precision resistors of  1 
percent used in critical applications. And sometimes, you will see 

resistors of  10 percent used. But if we take 5 percent as the usual 
tolerance, then one guideline for selecting an approximation is this: 
Ignore a quantity if it produces an error of less than 5 percent. This 
means we can use the ideal diode if it produces less than 5 percent 
error. If the ideal diode results in 5 percent or more error, switch to 
the second approximation. Also, ignore the effect of ripple when it 
is less than 10 percent of the load voltage. (Remember: the peak-to-
peak ripple is divided by two before subtracting from the load 
voltage. Therefore, a 10 percent ripple produces only a 4 percent 
error in load voltage.) 

The foregoing guideline will be of some help in deciding which 
approximation to use, but don't lean on this guideline too heavily. 
You may have a situation where a 5 percent guideline is not 
suitable, Remember the artist's brushes. The job may require a 
smaller or larger brush. It is impossible to give you a rule for every 
situation because real life is too messy and has too many 
exceptions. But don't be discouraged. That's what makes electronics 
more interesting than accounting. Use the basic guideline given 
here, but be ready to abandon it if you feel it doesn't apply to your 
situation. 

Example 4–7 

Suppose a bridge rectifier has a dc load current of 10 mA and a 
filter capacitance of 470  F. What is the peak-to-peak ripple out of 

a capacitor-input filer? 

Solution 

Use Eq. ( 4-8) to get 

VR  
10mA

120Hz)(470 F
0.117V

( )
 

This assumes the input frequency is 60 Hz,. which is the normal 
line frequency in the United States. 
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Example 4–8 

Assume we have a filtered bridge rectifier with a line voltage of 120 
V rms, a turns ratio of 9.45, a filter capacitance of 470  F, and a 

load resistance of 1 k. What is the dc load voltage? 

Solution 

Start by calculating the rms secondary voltage: 

V2  
120V

9.45
12.7V  

This is what you would measure with an ac voltmeter connected 
across the secondary winding. 

Next, calculate the peak secondary voltage: 

Vp2  
12.7V

0.707
18V  

With an ideal diode and ignoring the ripple, the dc load voltage 
equals the peak secondary voltage: 

Vdc  18V  

This answer would be adequate if you were troubleshooting a 
circuit like this. The dc load voltage is the approximate value you 
would read with a dc voltmeter across the load resistor. If there 
were trouble in such a circuit, the dc voltage probably would be 
much lower than 18 V. 

The second approximation improves the answer by including the 
effect of the two-diode voltage drops: 

Vdc   18V 1.4V 16.6V  

This is more accurate, so let us use it in the remaining calculations. 

To calculate the ripple, we need the value of dc load current: 

I
k

 
16.6V

16.6mA
1 

                    

Now, we can use Eq. (4-8): 
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V
F

R  
16.6mA

120Hz)(470
0.294V

( )
                    

This is the peak-to-peak ripple and is what you would see if you 
looked at the load voltage with the ac input of an oscilloscope. This 
ripple has little effect on the dc load voltage: 

 V (with ripple) =  16.6 -  
0.294 V

2
16.5Vdc   

This gives you the basic idea of how to calculate the dc load voltage 
and ripple. 

Voltage Multipliers 

A voltage multiplier is two or more peak detectors or peak rectifiers 
that produce a dc voltage equal to a multiple of the peak input 

voltage ( 2 3 4V V Vp p p, , , and so on). These power supplies are used for 

high voltage/low current devices like cathode-ray tubes (the 
picture tubes in TV receivers, oscilloscopes, and computer 
displays). 

Half-Wave Voltage Doubler 

Figure 4-15a is a voltage doubler. At the peak of the negative half 
cycle, D1 is forward-biased and D2 is reverse-biased. Ideally, this 
charges C1 to the peak voltage, Vp, With the polarity shown in Fig. 
4-15b. At the peak of the positive half cycle, D1 is reverse-biased 
and D2 is forward-biased. Because the source and C1 are in series, C2 
Will try to charge toward 2Vp. After several cycles, the voltage 
across C2 Will equal 2Vp, as shown in Fig. 4-15c. 

By redrawing the circuit and connecting a load resistance, we get 
Fig. 1-15d. Now it's clear that the final capacitor discharges through 
the load resistor. As long as RL is large, the output voltage equals 
2Vp (ideally). That is, provided the load is light (long time 
constant), the output voltage is double the peak input voltage. This 
input voltage normally comes from the secondary winding of a 
transformer. 
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For a given transformer, you can get twice as much output voltage 
as you get from a standard peak rectifier. This is useful when you 
are trying to produce high voltages (several hundred volts or 
more). Why? Because higher secondary voltages result in bulkier 
transformers. At some point, a designer may prefer to use voltage 
doublers instead of bigger transformers. 

The circuit is called a half-wave doubler because the output 
capacitor, C2, is charged only once during each cycle. As a result, 
the ripple frequency is 60 Hz. Sometimes you will see a surge 
resistor in series with C1. 

 

Figure 4-15 
Half-wave Voltage Doubler 

 

Figure 4-16 
Full-wave Voltage Doubler 

Full-Wave Voltage Doubler 

Figure 4-16 shows a full-wave voltage doubler. On the positive half 
cycle of the source, the upper capacitor charges to the peak voltage 
with the polarity shown. On the next half cycle, the lower capacitor 
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charges to the peak voltage with the indicated polarity. For a light 
load, the final output voltage is approximately 2Vp. 

The circuit is called a full-wave voltage doubler because one of the 
output capacitors is being charged during each half cycle. Stated 
another way, the output ripple is 120 Hz. This ripple frequency is 
an advantage because it is easier to filter. Another advantage of the 
full-wave doubler is that the PIV rating of the diodes need only be 
greater than Vp. 

The disadvantage of a full-wave doubler is the lack of a common 
ground between input and output. In other words, if we ground 
the lower end of the load resistor in Fig. 4-16, the source is Floating. 
In the half- wave doubler of Fig. 4-15d, grounding the load resistor 
also grounds the source, an advantage in some applications. 

Study Aids 

The following study aids will help to reinforce the ideas discussed 
in this chapter. For best results, use these study aids within 6 hours 
of reading the earlier material. Then review these study aids a week 
later and a month later to ensure that the concepts remain in your 
long-term memory. 
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Summary 

Sec. 4-1 The Input Transformer 

The input transformer is usually a step-down transformer. In this 
type of transformer, the voltage is stepped down and the current is 
stepped up. One way to remember this is by remembering that the 
output power equals the input power in a lossless transformer. 

Sec. 4-2 The Half-wave Rectifier 

The half-wave rectifier has a diode in series with a load resistor. 
The load voltage is a half-wave rectified sine wave with a peak 
value approximately equal to the peak secondary voltage. The dc or 
average load voltage equals 31.8 percent of the peak load voltage. 

See. 4-3 The Full-wave Rectifier 

The full-wave rectifier has a center-tapped transformer with two 
diodes and a load resistor. The load voltage is a full-wave rectified 
sine wave with a peak value approximately equal to half of the 
peak Secondary voltage. The dc or average load voltage equals 63.6 
percent of the peak load voltage. The ripple frequency equals two 
times the input frequency. 

See. 44 The Bridge Rectifier 

The bridge rectifier has four diodes. The load voltage is a full-wave 
rectified sine wave with a peak value approximately equal to peak 
secondary voltage. The de or average load voltage equals 63.6 
percent of the peak load voltage. The ripple frequency equals two 
times the line frequency. 

Sec, 4-5 The capacitor-input Filter 

This is a capacitor across the load resistor, The idea is to charge the 
capacitor to the peak voltage and let it supply current to the load 
when the diodes are nonconducting. With a large capacitor, the 
ripple is small and the load voltage is almost a pure dc voltage. 
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See. 4-6 Calculating Other Quantities 

In a full-wave or bridge rectifier, the diode current is half the load 
current and the peak inverse voltage equals the peak secondary 
voltage. In any kind of rectifier, the primary current approximately 
equals the load power divided by the primary voltage. 

See. 4-7 Surge Current 

Because the filter capacitor is uncharged before the power is turned 
on, the initial charging current is quite high. If the filter capacitor is 

less than 1000 F, the surge current is usually too brief to damage 
the diodes. 

See. 4-8 Troubleshoot 

The basic measurements you can make on a rectifier circuit include 
a floating ac voltmeter across the secondary winding to measure 
the rms secondary voltage, a dc voltmeter across the load resistor to 
measure the dc load voltage, and an oscilloscope across the load 
resistor to measure the peak-to-peak ripple. 

Sec, 4-9 Reading a Data Sheet 

The three most important specifications on the data sheet of a diode 
are the peak reverse voltage, the maximum diode current, and the 
maximum surge current. 
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Vocabulary 

In your own words, explain what each of the following terms 
means . Keep your answers short and to the point. If necessary, 
verify your answer by rereading the appropriate discussion or by 
looking at the end-of-book Glossary.  

 

bridge rectifier   peak value 

capacitor-input filter  rectifier diode 

dc value    ripple 

full-wave rectifier   rms value 

half-wave rectifier   step-down transformer 

line voltage    surge current 

peak inverse voltage   

Important Equations 

The following formulas are useless if you don't know what they 
mean in words. Suggestions: Look at each formula, then read the 
words to find out what the formula means. Your chances of 
learning and remembering are much better if you concentrate on 
words rather than formulas: 

Eq. 4–1 RMS Voltage 

Vrms = .707Vp 

This equation relates the heating effect of a dc voltage to an ac 
voltage. In effect, it converts a sine wave with a peak value of Vp to 
a dc voltage with a value of Vrms. It says a sine wave with a peak 
value of Vp produces the same amount of heat or power as a dc 
voltage with a value of Vrms. The magic number 0.707 comes from a 
calculus derivation. There’s not much else you can do here except 
memorize the relation. 
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Eq. 4-5 DC Voltage from a Half-wave Rectifier 

Vdc = 0.318Vp 

One of the things you can do with calculus is work out the average 
value of time-varying signal. If you really want to know where the 
number 0.318 comes from, you will have to learn calculus. 
Otherwise, just memorize the equation. It says the dc or average 
value of a half-wave rectified sine wave equals .318 percent of the 
peak voltage. 

Eq. 4-6 DC Voltage from a Full-wave Rectifier 

Vdc = 0.636 VP 

Because the fill-wave signal has twice as many cycles as a half-
wave signal, the average voltage is twice as much. The question 
says that the dc voltage equals 63.6 percent of the peak voltage of 
the full-wave rectified sine wave. 

Eq. 4-7 DC Frequency from Full-wave Voltage 

fout = 2fin 

This applies to full-wave and bridge rectifiers. It says the ripple 
frequency equals two times the line frequency. If line frequency is 
60 Hz, the ripple frequency is 120 Hz. Very important for 
troubleshooting. Remember it. 

Eq. 4-8 DC Ripple out of Capacitor-Input Filter 

VR = 
I

FC
 

This equation is the key to the value of ripple, something a 
troubleshooter or designer needs to know. It says that the peak-to-
peak ripple equals the dc load current divided by the ripple 
frequency times the filter capacitance. 

Eq. 4-9 DC Diode Current 

ID = 0.5IL 

This applies to full-wave and bridge rectifiers. The equation says 
that the dc current in any diode equals half the dc load current. 
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Eq. 4-10 DC Peak Inverse Voltage 

PIV = Vp2 

This applies to full-wave and bridge rectifiers. It says that the peak 
inverse voltage across a non conducting diode equals the peak 
secondary voltage. 
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Student Assignments 

Questions 

The following may have more than right answer. Select the best 
answer. This is the one that is always true, or covers more 
situations, or fits the context, etc. 

1.  If N1/N2 = 2, and the primary voltage is 120 V, what is the 
secondary voltage? 

 a. 0 V c.  40 V 

 b. 36 V d. 60 V 

2. In a step-down transformer, which is larger? 

      a.  Primary voltage c.   Neither 

      b.  Secondary voltage d.   No answer possible 

3. A transformer has a turns ratio of 4:1. What is the peak 
secondary voltage if 115 V rms is applied to the primary 
winding? 

 a.  40.7 V c.  163 V 

 b.  64.6 V      d.  170 V 

4.   With a half-wave rectified voltage across the load resistor, load 
current flows for what part of a cycle? 

 a.  0   c.  180° 

  b.  90   d.  360   

5.  Suppose line voltage may be as low as 105 V rms or as high as 
125 rms in a half-wave rectifier. With a 5:1 step-down 
transformer, the maximum peak load voltage is closest to 

      a.  21 V       c.  29.6 V 

      b.  25 V       d.  35.4 V 

 6.  The voltage out of a bridge rectifier is 

      a. Half-wave signal b.  Full-wave signal 

      c.  Bridge-rectified signal d.  Sinewave 
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7.  If the line voltage is 115 V rms, a turns ratio of 5:1 means the 
rms secondary voltage is closest to 

  a. 15 V      c.  30 V 

   b. 23 V      d.  35 V 

8.  What is the peak load voltage in a full-wave rectifier if the 
secondary voltage is 20 V rms? 

      a.  0 V        c.  14.1 V 

      b.  0.7 V       d.  28.3 V 

9.  We want a peak load voltage of 40 V out of a bridge rectifier. 
What is the approximate rms value of secondary voltage? 

      a.  0 V        c.  28.3 V 

      b.  14.4 V       d.  56.6 V 

10. With a full-wave rectified voltage across the load resistor, load 
current flows for what part of a cycle? 

      a.  0   c.  180  

      b.  90   d.  360  

11.  What is the peak load voltage out of a bridge rectifier for a 
secondary voltage of 15 V rms? (Use second approximation.) 

 a.  9.2 V      c.  19.8 V 

  b.  15 V       d.  24.3 V 

12.  If line frequency is 60 Hz, the output frequency of a half-wave 
rectifier is 

  a.  30 Hz       c.  120 Hz 

   b.  60 Hz       d.  240 Hz 

13.  If line frequency is 60 Hz, the output frequency of a bridge 
rectifier is 

 a.  30 Hz       c.  120 Hz 

   b.  60 Hz      d.  240 Hz 

14.  With the same secondary voltage and filter, which has the most 
ripple? 

 a. Half-wave rectifier c.  Bridge rectifier 
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 b. Full-wave rectifier d. Impossible to say 
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15.  With the same secondary voltage and filter, which produces the 
least load voltage? 

 a. Half-wave rectifier c.  Bridge rectifier 

 b. Full-wave rectifier d. Impossible to say 

16. If the filtered load current is 10 mA, which of the following has 
a diode current of 10 mA? 

 a. Half-wave rectifier c.  Bridge rectifier 

 b. Full-wave rectifier d. Impossible to say 

17.  If the load current is 5 mA and the filter capacitance is 1000  F, 

what is the peak-to-peak ripple out of a bridge rectifier? 

    a.  21.3 pV      c. 21.3 mV 

    b.  56.3 nV      d.  41.7 mV 

18. The diodes in a bridge rectifier each have a maximum de 
current rating of 2 A. This means the de load current can have a 
maximum value of 

    a.  1 A        c.  4 A 

    b.  2 A        d.  8 A 

19. What is the PIV across each diode of a bridge rectifier with a 
secondary voltage of 20 V rms? 

    a.  14.1 V      c.  28.3 V 

    b.  20 V       d.  34 V 

20.  If the secondary voltage increases in a bridge rectifier with a 
capacitor-input filter, the load voltage will 

    a.  Decrease  c.  Increase 

    b.  Stay the same  d.  None of these 

21. If the filter capacitance is increased, the ripple will 

 a.  Decrease  c.  Increase 

    b.  Stay the same  d.  None of these 
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Figure 4-30 

22.  In Fig. 4-30, the filter capacitor is open. What will the load 
voltage look like on an oscilloscope? 

 a. Horizontal line at 0 V 

 b. Horizontal line at normal output 

 c. Half-wave signal 

 d. Full-wave signal 

23.  Something is shorting out the load resistor of Fig. 4-30. After 
you remove the short, you should check the condition of the 

  a.  Fuse 

    b.  Odd-numbered diodes 

    c.  Even-numbered diodes 

    d.  All of the foregoing 

24.  In Fig. 4-30, the secondary voltage has an rms value of  
12.7 V. If a dc voltmeter indicates a load voltage of 11.4 V, the 
trouble is probably 

    a.   An open filter capacitor 

     b.  Blown fuse 

    c.   Open secondary winding 

    d. No center tap 

25.  The dc load voltage of Fig. 4-30 seems normal, but the ripple is 
60 Hz. Which of these is a possible trouble: 

    a.  An open filter capacitor 

    b.   Blown fuse 

    c.   Open secondary winding 

    d.   Open diode 
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Basic Problems 

Sec. 4-1 The Input Transformer 

4-1.  Suppose the peak value of a sinusoidal voltage is 50 V. What 
is the rms value? 

4-2.  Line voltage may vary from 105 to 125 V rms. Calculate the 
peak value for low-line voltage and high-line voltage. 

4-3.  A step-up transformer has a turns ratio of 1:4. If the line 
voltage is 115 V rms, what is the peak secondary voltage? 

4-4.  A step-down transformer has a primary voltage of 110 V rms 
and a secondary voltage of 12.7 V rms. What is the turns ratio? 

4-5.  A transformer has a primary voltage of 120 V rms and a 
secondary voltage of 25 V rms. If the secondary current is  
1A rms, what is the primary current? 

Sec 4-2 The Half-wave Rectifier 

4-6. During the day the line frequency varies slightly from its 
nominal value of 60 Hz. Suppose the line frequency is 61 Hz. 
What is the period of the rectified output voltage from a half-
wave rectifier? 

4-7. A step-down transformer with a turns ratio of 3:1 is connected 
to a half-wave rectifier. If the line voltage is 115 V rms, what is 
the peak load voltage? Give the two answers: one  for an 
ideal diode, and another for the second approximation. 

Sec. 4-3 The Full-wave Rectifier 

4-8. During the day, the line frequency drops down to 59 Hz. What 
is the frequency out of a full-wave rectifier for this input 
frequency? What is the period of the output? 

4-9. Refer to Fig. 4-7. Suppose the line voltage varies from 105 V 
rms to 125 V rms. What is the peak load voltage for the two 
extremes? (Use ideal diodes.) 

4-10. If the turns ratio of Fig. 4-7 is changed to 6:1, what is the dc 
load current? 
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Sec. 4-4 The Bridge Rectifier 

4-11. Refer to Fig. 4-10. If the load resistance is changed to 3.3 k , 
what is the dc load current? Give answers for two cases: ideal 
diode and second approximation. 

4-12. If in Fig. 4-10, the turns ratio is changed to 6:1 and the load 

resistance to 820 , what is the dc load current? (Give ideal-
and second-approximation answers.) 

Sec. 4-5 The Capacitor-input Filter 

4-13. A bridge rectifier has a dc load current of 20 mA and a filter 

capacitance of 680  F. What is the peak-to-peak ripple out of 
a capacitor-input filter? 

4-14. In the previous problem, the rms secondary voltage is 15 V. 
What is the dc load voltage? Give three answers: one based on 
ideal diodes, another based on the second approximation, and 
a third based on the effect of ripple. 

Sec. 4-6 Calculating Other Quantities 

4-15. The rms secondary voltage of Fig. 4-30 is 12.7 V. Use the ideal 
diode and ignore the effect of ripple on dc load voltage. Work 
out the values of each of these quantities: dc load voltage, dc 
load current, dc diode current, rms primary current, peak 
inverse voltage, and turns ratio. 

4-16. Repeat Prob. 4-15, but use the second approximation and 
include the effect of ripple on the dc load voltage. 

4-17. Draw the schematic diagram of a bridge rectifier with a 
capacitor-input filter and these circuit values: V2 = 20 V, C 

1000  F, RL = 1 k . What is the load voltage and peak-to-
peak ripple? 

Sec. 4-8 Troubleshooting 

4-18. You measure 24 V rms across the secondary of Fig. 4-30. Next 
you measure 21.6 V dc across the load resistor. What is the 
most likely trouble? 

4-19. The dc load voltage of Fig. 4-30 is too low. Looking at the 
ripple with a scope, you discover it has a frequency of 60 Hz. 
Give some possible causes. 
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4-20. There is no voltage out of the circuit of Fig. 4-30. Give some 
possible troubles. 

4-21. Checking with an ohmmeter, you find all diodes in Fig. 4-30 
open. You replace the diodes. What else should you check 
before you power up? 

Advanced Problems 

4-22 You are designing a bridge rectifier with a capacitor-input 
filter. The specifications are a dc load voltage of I5 V and a 
ripple of 1 V for a load resistance of 680 . How much rms 
voltage should the secondary winding produce for a line 
voltage of 15 V rms? What size should the filter capacitor be? 
What are the minimum Io and PIV ratings for diodes? 

4-23. Design a full-wave rectifier using a 48 V rms center-tapped 
transformer that produces a 10 percent ripple across a 
capacitor-input filter with a load resistance of 330 . What 
are the minimum Io and PIV ratings of the diodes? 

4-24. Design a power supply to meet the following specifications: 
The secondary voltage is 12.6 V rms and the dc output is 
approximately 17.8 V at 120 mA. What are the minimum Io 
and PIV ratings of the diodes? 

4-25 A full-wave signal has a dc value of 0.636 times the peak 
value. With your calculator or a table of sine values, you can 
derive the average value of 0.636. Describe how you would 
do it. 

4-26. The secondary voltage in Fig. 4-31 is 25 V rms. With the 
switch in the upper position, what is the output voltage? 
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4-27. A rectifier diode has a forward voltage of 1.2 V at 2 A. The 

winding resistance is 0.3  . If the secondary voltage is 25 V 
rms, what is the surge current in a bridge rectifier? 
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T-Shooter Problems 

Use Fig. 4-32 for the remaining problems. If you haven't already 
done so, read Example 4-12 before attempting these problems. You 
can measure voltages in any order; for instance, V2 first, VL second, 
and VR third, or whatever. These voltages are the clues to the 
trouble. After measuring a voltage, try to figure out what to 
measure next. Troubleshooting has so many possibilities that it is 
impractical to try to give rules for every situation. The best 
approach is to measure something, then think about what this tells 
you. Usually, the measurement gives you an idea of what you 
should measure next. Keep making measurements until you have 
enough clues to logically figure out what the trouble is. 

 

The possible troubles are open or shorted components (diodes, 
resistors, capacitors, etc.). Besides voltage measurements, there are 
other measurements as follows: f for ripple frequency, RL for load 
resistance, C1 for capacitor resistance, and Fl for fuse resistance. 
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4-28. Find Trouble 1. 

4-29. Find Troubles 2 and 3. 

4-30. Find Troubles 4 and 5. 

4-31. Find Troubles 6 and 7. 

4-32. Find Troubles 8 and 9. 
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Answers 

4-1. 35.4 V  

4-3.  651 V  

4-5.  208 mA  

4-7.  54.2 V and 53.5 V  

4-9.  14.9 V and 17.7 V 

4.11. 6.54 mA (ideal) and 6.27 mA (second) 

4.13. 0.245 V 

4.15. 18 V, 18 mA, 9 mA, 2.7 mA, 18 V, and 9.45 

4.17. Ideal: 28.3 V and 0.236 V; second: 26.9 V and 0.224 V 

4.19. Possible troubles include and open diode or an open 
connection in one of the diode branches. 

4.21. You should check the load resistance to see if it is being 
shorted out. 

4.23. Ideal and ignore ripple. VL = 33.9 V, C = 252 F, IO = 51 mA, 
and PIV = 33.9; second and ignore ripple: . VL = 32.5 V,  
C = 252 F, IO = 49.2 mA, and PIV = 33.9; second and include 
ripple: VL = 30.9 V, C = 252 F, IO = 46.8 mA, and PIV = 33.9 
V 

4.25.  We can  look up the sine of the angle every 5 degrees 
between 0° and 90°. There are 19 samples including the sine 
of 0°. By adding up the sine values and dividing by 19, we 
get 0.629. This is close to the exact value of 0.636. If a            
more accurate answer is needed, we could use a smaller 
interval, say every degree.  

4.27.  44.2 A 

4-29.  Trouble 2: Diode open; Trouble 3: Load resistor shorted  

4-31.  Trouble 6: Load resistor open; Trouble 7: Secondary winding 
open. 
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Special Purpose Diodes 

 

Rectifier diodes are the most common type of diode. They are used 
in power supplies to convert ac voltage to dc voltage. But 
rectification is not all that a diode can do. Now we will discuss 
diodes used in other applications. The chapter begins with the 
zener diode, which is optimized for its breakdown properties. 
Zener diodes are very important because they are the key to 
voltage regulation. The chapter also covers optoelectronic diodes. 
Schottky diodes, varactors, and other diode 

The Zener Diode 

Small-signal and rectifier diodes are never intentionally operated in 
the breakdown region because this may damage them. A zener 
diode is different; it is a silicon diode that the manufacturer has 
optimized for operation in the breakdown region. In other words, 
unlike ordinary diodes that never work in the breakdown region, 
zener diodes work best in the breakdown region. Sometimes called 
a breakdown diode, the zener diode is the backbone of voltage 
regulators, circuits that hold the load voltage almost constant 
despite large changes in line voltage and load resistance. 

I-V Graph 

Figure 5-la shows the schematic symbol of a zener diode; Fig. 5 
-1b is an alternative symbol. In either symbol, the lines resemble a 
“z,” which stands for zener. By varying the doping level of silicon 
diodes, a manufacturer can produce zener diodes with breakdown 
voltages from about 2 to 200 V. These diodes can operate in any of 
three regions: forward, leakage, and breakdown. 

Figure 5-1c shows the I-V graph of a zener diode. In the forward 
region, it starts conducting around 0.7 V, just like an ordinary 
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silicon diode. In the leakage region (between zero and breakdown) 
it has only a small reverse current. In a zener diode, the breakdown 
has a very sharp knee, followed by an almost vertical increase in 
current. Note that the voltage is almost constant, approximately 
equal to VZ over most of the breakdown region. Data sheets usually 

specify the value of VZ at a particular test current  

 

Figure 5-1 
Zener Diode 

(a) Symbol  (b) Alternative Symbol (c) Diode Curve 

Do not let the use of the minus signs confuse you. Minus signs need 
to be included with graphs because you are simultaneously 
showing forward and reverse values. But you don't have to use 
minus signs in other discussions if the meaning is clear without 
them. For instance, it is preferable to say that a zener diode has a 
breakdown voltage of 10 V, rather than to say it has a breakdown 
voltage of - 10 V. Anyone who knows how a zener diode works 
already knows it has to be reverse-biased. A pure mathematician 
might prefer to say a zener diode has a breakdown voltage of - 10 
V, but a practicing engineer or technician will prefer to say it has a 
breakdown voltage of 10 V. 

Zener Resistance 

Because all diodes have some bulk resistance in the p and n regions, 
the current through a zener diode produces a small voltage drop in 
addition to the breakdown voltage. To state it another way, when a 
zener diode is operating in the breakdown region of Fig. 5-lc, an 
increase in current produces a slight increase in voltage. The 
increase is very small, typically a few tenths of a volt. This may be 

.ZTI

I 
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important in design work, but not for troubleshooting and 
preliminary analysis. Unless otherwise indicated, our discussions 
will ignore the zener resistance. 
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Zener Regulator 

A zener diode is sometimes called a voltage-regulator diode because 
it maintains a constant output voltage even though the current 
through it changes. For normal operation, you have to reverse-bias 
the zener diode as shown in Fig. 5-2a. Furthermore, to get 
breakdown operation, the source voltage Vs must be greater than 
the zener breakdown voltage VZ. A series resistor RS is always used 
to limit the zener current to less than its maximum current rating. 
Otherwise, the zener diode will burn out like any device with too 
much power dissipation. 

      
    Figure 5-2 

    Zener Regulator 
 

Figure 5-2b shows an alternative way to draw the circuit with 
grounds. Whenever a circuit has grounds, it is usually best to 
measure node voltages with respect to ground. In fact, if you are 
using a voltmeter with a power plug, its common terminal may be 
grounded. In this case, it is necessary to measure node voltages to 
ground. 

For instance, suppose you want to know the voltage across the 
series resistor of Fig. 5-2b. Here is the usual way to find it when you 
have a built-up circuit. First, measure the voltage from the left end 
of RS to ground. Second, measure the voltage from the right end of 
RS to ground. Third, subtract the two voltages to get the voltage 
across RS. This indirect method is necessary because the common 
lead of many plug-in voltmeters is grounded. (Note: If you have a 
floating VOM, you can connect directly across the series resistor.) 

 Figure 5-2c shows the output of a power supply connected to a 
series resistor and a zener diode. This circuit is used when you 
want a de output voltage that is less than the output of the power 
supply. A circuit like this is called a zener voltage regulator, or simply 
a zener regulator. 
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Ohm's Law Again 

In Fig. 5-2, the voltage across the series resistor equals the 
difference between the source voltage and the zener voltage. 
Therefore, the current through the resistor is 

     (5-1) 

Don't memorize this equation. It is nothing more than Ohm's law 
applied to the series resistor. The series current equals the voltage 
across the series resistor divided by the resistance. The only thing 
you have to remember is that the voltage across the series resistor is 
the difference between the source voltage and the zener voltage. In 
fact, you don't even have to remember that because the circuit itself 
contains this information. When you look at Fig. 5-2, you can see at 
a glance that the voltage across the series resistor equals VS minus 
VZ. 

Once you have the value of series current, you also have the value 
of zener current. Why? Because Fig. 5-2 is a series circuit and you 
know that current is the same in all parts of a series circuit. 

Ideal Zener Diode 

For troubleshooting and preliminary 
analysis, we can approxi-mate the 
breakdown region as vertical. Therefore, 
the voltage is constant even though the 
current changes, which is equivalent to 
ignoring the zener resistance. Figure 5-3a 
shows the ideal approximation of a zener 
diode. This means that a zener diode 
operating in the breakdown region ideally 
acts like a battery. In a circuit, it means that 
you can mentally replace a zener diode by a 
voltage source of VZ, provided the zener 
diode is operating in the breakdown region. 

Second Approximation 

Figure 5-3b shows the second approxima- 
tion of a zener diode. A zener resistance (relatively small) is in 

S

ZS
S

R

VV
I




 

Figure 5-3 
Zener approximation 
(a) Ideal; (b) Second 

approximation 
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series with an ideal battery. This resistance produces a voltage drop 
equal to the product of the current and the resistance.  
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Example 5–1 

Suppose the zener diode of Fig. 5-4a has a breakdown voltage of 
10V. What are the minimum and maximum zener currents? 

Solution 

The applied voltage may vary from 20 to 40 V. Ideally, a zener 
diode acts like the battery shown in Fig. 5-4b, Therefore, the output 
voltage is 10 V for any source voltage between 20 and 40 V. 

The minimum current occurs when the source voltage is minimum. 
Visualize 20 V on the left end of the resistor and 10 V on the right 
end. Then you can see that the voltage across resister is 20 V - 10 V, 
or 10 V. The rest is Ohm's law: 

 

 

Figure 5–4 
Example 

The maximum current occurs when the source voltage is 40 V. In 
this case, the voltage across resistor is 30 V, which gives a current of 

 

In a voltage regulator like Fig. 5-4a, the output voltage is held 
constant at 10 V, despite the change in source voltage from 20 to 40 
V. The larger source voltage produces more zener current, but the 
output voltage holds rock-solid at 10 V. (If the zener resistance is 
included, the output voltage increases slightly when the source 
voltage increases.) 

 

12.2mA
820

10V



SI

mA6.63
820

30V



SI



 

Power Production Test Technician April, 2010  

Training  Page 72 

The Loaded Zener Regulator 

Figure 5-5a shows a loaded zener regulator, and Fig, 5-5b shows the 
same circuit in a practical form. This circuit is more complicated 
than the unloaded zener regulator analyzed in the previous section, 
but the basic idea is the same. The zener diode operates in the 
breakdown region and holds the load voltage constant. Even if the 
source voltage changes or the load resistance varies, the load 
voltage will remain fixed and equal to the zener voltage. 

Breakdown Operation 

Always remember this: The zener diode has to operate in the 
breakdown region to hold the load voltage constant, To put it 
another way, the zener diode cannot regulate if the load voltage is 
less than the zener voltage. 

How can you tell if the zener diode of Fig, 5-5 is operating in the 
breakdown region? The designer of the circuit usually takes care of 
this. Here is the formula that applies: 

  (5-2) 

Figure 5–5 
Zener Regulator 

This is the voltage that exists when the zener diode is disconnected 
from the circuit. This voltage has to be greater than the zener 
voltage; otherwise, breakdown cannot occur. 

Here is where the equation comes from. When the zener diode is 
disconnected from the circuit, all that's left is a voltage divider 
consisting of RS in series with RL. The current through this voltage 
divider is 

S
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L
TH V
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R
V



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LS

S

S
RR

V
I


   

The load voltage without the zener diode equals the previous 
current times the load resistance. When you multiply the current by 
the load resistance, you get the right side of Eq. (5-2), where VTH 
stands for the Thevenin voltage. This is the voltage with the zener 
diode out of the circuit. 

Series Current 

Unless otherwise indicated, in all subsequent discussions we 
assume the zener diode is operating in the breakdown region. In 
Fig. 5-5, the current through the series resistor is given by 

S

ZS

S
R

VV
I


    (5-3) 

This is Ohm's law applied to the current-limiting resistor. It is the 
same whether or not there is a load resistor. In other words, if you 
disconnect the load resistor, the current through the series resistor 
still equals the voltage across the resistor divided by the resistance. 

Load Current 

Ideally, the load voltage equals the zener voltage because the load 
resistor is in parallel with the zener diode. As an equation, 

VL = VZ      (5-4) 

This allows us to use Ohm's law to calculate the load current: 

L

L
L

R

V
I        (5-5) 

Zener Current 

With KirchhoffÕs current law, 

IS = IZ + IL 

This should be clear from your study of series-parallel circuits. The 
zener diode and the load resistor are in parallel. The sum of their 
currents has to equal the total current, which is the same as the 
current through the series resistor. 
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We can rearrange the foregoing equation to get this important 
formula: 

IZ = IS - IL        (5-6) 

This tells you that the zener current no longer equals the series 
current, as it does in an unloaded zener regulator. Because of the 
load resistor, the zener current now equals the series current minus 
the load current. 

Process 

Troubleshooters, designers, and other professionals don't blindly 
plug numbers into formulas, hoping to get the right answer. 
Professionals know the meaning of each step they take when they 
solve a problem. Knowing what you are doing is a lot better than 
relying on formulas. 

If professionals don't use formulas, what do they use? Some-thing 
called a process. A process is a step-by-step routine used to solve 
problems. When professionals solve a problem, they work out the 
values of different quantities, using Ohm's law in a logical 
sequence. Occasionally, a complicated formula may be necessary, 
but that is the exception rather than the rule. Often, problems in 
electronics are simply Ohm's law and other basic ideas applied 
over and over to the different components and devices in the 
circuit. 

Here is a three-step process for finding the zener current: 

1.  Calculate the current through the series resistor. 

2.  Calculate the load current. 

3.  Calculate the zener current. 

These steps can be abbreviated to 

1.  Series current 

2.  Load current 

3.  Zener current 

or symbolically, 

1.  IS 
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2.  IL 

3.  IZ 

This is what professionals remember. You get the series current 
first, the load current second, and the zener current third. And you 
use Ohm's and other basic ideas in the process. The details of the 
calculations are automatically remembered, at least most of the 
time. 
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If you can remember the three quantities in the process, your mind 
usually takes care of the rest of the details. If you do get stuck, look 
at the formulas to jog your memory. But don't use formulas blindly. 
Reread the discussion or examples if you can't remember the 
details of some step in the process. In general, don't memorize any 
formula unless you expect to use it a few thousand times. Ohm's 
law is an example of a formula to memorize. The equations of this 
chapter are examples of formulas you do not memorize because 
most of them are rewrites of Ohm's law. 

Ripple across the Load Resistor 

In Fig. 5-5b, the output of a power supply drives a zener regulator. 
As you know, the power supply produces a dc voltage with a 
ripple. Ideally, the zener regulator reduces the ripple to zero 
because the load voltage is constant and equal to the zener voltage. 
As an example, suppose the power supply produces a dc voltage of 
20 V with a peak-to-peak ripple of 2 V. Then the supply voltage is 
swinging from 19 V minimum to 21 V maximum. Variations in 
supply voltage will change the zener current, out they have almost 
no effect on the load voltage. 

If you take into account the small zener resistance, you will find 
that there is a small ripple across the load resistor. But this ripple is 
much smaller than the original ripple coming out of the power 
supply. In fact, you can estimate the new ripple with this equation: 

)()( inR

ZS

Z
outR V

RR

R
V


  (5-7) 

This is an accurate approximation of peak-to-peak output ripple. If 
it reminds you of a voltage divider, you are right on target. It comes 
from visualizing the zener diode replaced by its second 
approximation. With respect to the ripple, the circuit acts like a 
voltage divider formed by RS in series with RZ. 
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Temperature Coefficient 

One final point: Raising the ambient (surrounding) temperature 
changes the zener voltage slightly. On data sheers, the effect of 
temperature is listed under the temperature coefficient, which is 
the percentage change per degree change. A designer needs to 
calculate the change in zener voltage at the highest ambient 
temperature. But even a troubleshooter should know that 
temperature can change the zener voltage. 

For zener diodes with breakdown voltages less than 5 V, the 
temperature coefficient is negative. For tenet diodes with 
breakdown voltages of more than 6 V, the temperature coefficient 
is positive. Between 5 and 6 V, the temperature coefficient changes 
from negative to positive; this means that you can find an operating 
point for a zener diode at which the temperature coefficient is zero. 
This is important in some applications where a solid zener voltage 
is needed over a large temperature range. 

Example 5–2 

Figure 5-6 has these circuit values: VS = 18 V, VZ 10 V,  

RS = 270  , and RL = 1k .  Is the zener diode operating in 
breakdown region? 

Solution 

Use Eq. (5-2), or better still, use your head. Mentally disconnect the 

zener diode. Then all that is left is a voltage divider with 270   in 

series with 1k . Therefore, the current through the voltage divider 
is 

14.2mA
27.1

18V





k
I  

 

Figure 5–6 
Example 
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Multiply this current by the total resistance to get the Thevenin 
voltage : 

VTH = (14.2 mA)(1 k ) = 14.2 V 

Since this voltage is greater than the zener voltage (10 V), the zener 
diode will operate in the breakdown region when it is reconnected 
to the circuit. 

Naturally, you can plug the values directly into Eq. (5-2) as follows: 

14.2V18V
27.1

1







K

K
VTH

 

The result is the same, so either method is acceptable. The 
advantage of the first method is that you are more likely to 
remember it because it is Ohm's law applied twice. Also, the first 
method requires you to think logically about what is happening in 
the circuit. But either method is valid, so use whichever you prefer. 

Example 5–3 

What does the zener current equal in Fig. 5-6b? 

Solution 

You are given the voltage on both ends of the series resistor. 
Subtract the voltages, and you can see that 8 V is across the series 
resistor. Then Ohm's law gives 

29.6mA
270

8V



SI  

Since the load voltage is 10 V, the load current is 

mA01
1

10V





k
I L

 

The zener current is the difference of the two currents: 

IZ = 29.6 mA - 10 mA = 19.6 mA 
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Figure 5–7 
Zener Regulator with the Load Resistor 

 

Example 5–4 

The data sheet of a 1N961 gives a zener resistance of 8.5  . 
Suppose this zener diode is used in Fig, 5-7 with a series resistance 
of 270 . . What is the load ripple if the supply ripple is 2.V? 

With Eq. (5-7), 

61mV0.061V(2V)
5.278

5.8
)( 




OUTRV  

The final output is a dc voltage of 10V with a peak-to-peak ripple of 
only 6l mV 

Example 5–5 

What does the circuit of Fig. 5-8 do? 

Solution 

This is an example of a preregulator (the first zener diode) driving a 
zener regulator (the second zener diode). First, notice that the 
preregulator has an output voltage of 20V. This is the input to the 
second zener regulator, whose, output is 10 V. The basic idea is to 
provide the second regulator with a well-regulated input, so that 
the final output is extremely well regulated. 
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Figure 5–8 
Example 

Example 5–6 

What does the circuit of Fig, 5-9 do?  

Solution 

In most applications, zener diodes are used in voltage regulators 
where they remain in the breakdown region. But there are 
exceptions. Sometimes zener diodes are used in wave shaping 
circuits like Fig. 5-9. 

Notice the back-to-back action of two zener diodes.: On the positive 
half-cycle, the upper diode conducts and the lower diode breaks 
down. Therefore, the output is clipped as shown. The clipping level 
equals the zener voltage (broken-down diode) plus 0.7 V (forward-
biased diode). On the negative half-cycle, the action is reversed. 
The lower diode conducts, and the upper diode breaks down. In 
this way, the output is almost a square wave. The larger the input 
sine wave, the better looking the output square wave. 

Optoelectronic Devices 

Optoelectronics is the technology that combines optics and 
electronics. This exciting field includes many devices based on the 
action of a pn junction. Examples of optoelectronic devices are 
light-emitting diodes (LEDs), photodiodes, optocouplers, etc. Our 
discussion begins with the LED. 

Light-Emitting Diode 

Figure 5-10a shows a source connected to a resistor and a LED. The 
outward arrows symbolize the radiated light. In a forward-biased 
LED, free electrons cross the junction and fall into holes. As these 
electrons fall from a higher to a lower energy level, they radiate 
energy. In ordinary diodes, this energy goes off in the form of heat. 
But in a LED, the energy is radiated as light. LEDs have replaced 
incandescent lamps in many applications because of their low 
voltage, long life, and fast on-off switching. 
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Figure 5–10 
LED Circuits 

Ordinary diodes are made of silicon, an opaque material that 
blocks the passage of light. LEDs are different. By using elements 
like gallium, arsenic, and phosphorus, a manufacturer can produce 
LEDs that radiate red, green, yellow, blue, orange, or infrared 
(invisible). LEDs that produce visible radiation are useful with 
instruments, calculators, etc. The infrared LED finds applications in 
burglar alarm systems and other areas requiring invisible radiation. 

LED Voltage and Current 

The resistor of Fig. 5-10 is the usual current-limiting resistor that 
prevents the current from exceeding the maximum current rating 
of the diode. Since the resistor has a node voltage of VS on the left 
and a node voltage of VD on the right, the voltage across the 
resistor is the difference between the two voltages. With Ohm's 
law, the series current is 

S

DS

S
R

VV
I


    (5-8) 

For most of the commercially available LEDs, the typical voltage 
drop is from 1.5 to 2.5 V for currents between 10 and 50 mA. The 
exact voltage drop depends on the LED current, color, tolerance, 
etc. Unless otherwise specified, we will use a nominal drop of 2 V 
when troubleshooting or analyzing the LED circuits in this book. If 
you get into design work, consult the data sheets for the LEDs you 
are using. 

Seven-Segment Display 

Figure 5-11a shows a seven-segment display. It contains seven 
rectangular LEDs (A through G). Each LED is called a segment 
because it forms part of the character being displayed. Figure 5-11b 
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is a schematic diagram of the seven-segment display. External 
series resistors are included to limit the currents to safe levels. By 
grounding one or more resistors, we can form any digit from 0 
through 9. For instance, by grounding A, B, and C, we get a 7. 
Grounding A, B, C, D, and G produces a 3. 

A seven-segment display can also display capital letters A, C, E, 
and F, plus lowercase letters b and d. Microprocessor trainers often 
use seven-segment displays that show all digits from 0 through 9, 
plus A, b, C, d, E, and F. 

The seven-segment indicator of Fig. 5-11b is referred to as the 
common-anode type because all anodes are connected together. 
Also available is the common-cathode type where all cathodes are 
connected together. 

 

Figure 5–11 
(a) Seven-segment Indicator; (b) Schematic Diagram 

Photodiode 

As previously discussed, one component of reverse current in a 
diode is the flow of minority carriers. These carriers exist because 
thermal energy keeps dislodging valence electrons from their 
orbits, producing free electrons and holes in the process. The 
lifetime of the minority carriers is short, but while they exist they 
can contribute to the reverse current. 

When light energy bombards a pn junction, it can dislodge valence 
electrons. The more light striking the junction, the larger the 
reverse current in a diode. A photodiode is one that has been 
optimized for its sensitivity to light. In this diode, a window lets 
light pass through the package to the junction. The incoming light 
produces free electrons and holes. The stronger the light, the 
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greater the number of minority carriers and the larger the reverse 
current. 

Figure 5-12 shows the schematic symbol of a photodiode. The 
arrows represent the incoming Light. Especially important, the 
source and the series resistor reverse-bias the photodiode. As the 
light becomes brighter, the reverse current increases. With typical 
photodiodes, the reverse current is in the tens of microamperes. 

 

Figure 5–12 
Photodiode 
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Optocoupler 

An optocoupler (also called an optoisolator or an optically coupled 
isolator) combined a LED and a photodiode in a single package. 
Figure 5-13 shows an optocoupler. It has a LED on the input side 
and a photodiode on the output side. The left source voltage and 
the series resistor set up a current through the LED. Then the light 
from the LED hits the photodiode, and this sets up a reverse 
current in the output circuit. This reverse current produces a 
voltage across the output resistor. The output voltage then equals 
the output supply voltage minus the voltage across the resistor. 

When the input voltage is varying, the amount of light is 
fluctuating. This means that the output voltage is varying in step 
with the input voltage. This is why the combination of a LED and a 
photodiode is called an optocoupler. The device can couple an 
input signal to the output circuit. 

 

Figure 5–13 
Optocoupler 

The key advantage of an optocoupler is the electrical isolation 
between the input and output circuits. With an optocoupler, the 
only contact between the input and the output is a beam of light. 
Because of this, it is possible to have an insulation resistance 
between the two circuits in the thousands of megohms. Isolation 
like this comes in handy in high-voltage applications where the 
potentials of the two circuits may differ by several thousand volts. 

Example 5–7 

In Fig. 5-10 the source voltage is 10 V, and the series resistance is 

680  , What is the LED current? 

Solution 

Use a nominal LED drop of 2 V. Then the series resistor has 10 V on 
the left end and 2.V on the right end. This means the voltage across 
the resistor is 8 V. Finish off the problem with Ohm's law: 
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11.8mA
680

8V



I  

The Schottky Diode 

At lower frequencies, an ordinary diode can easily turn off when 
the bias changes from forward to reverse. But as the frequency 
increases, the diode reaches a point where it cannot turn off fast 
enough to prevent noticeable current during part of the reverse 
half-cycle. This effect is known as charge storage. It places a limit 
on the useful frequency of ordinary rectifier diodes. 

What happens is this. When a diode is forward-biased, some of the 
carriers in the depletion layers have not yet recombined. If the 
diode is suddenly reverse-biased, these carriers can how in the 
reverse direction for a little while. The greater the lifetime, the 
longer these charges can contribute to reverse current. 

The time it takes to turn off a forward-biased diode is called the 
reverse recovery time, The reverse recovery time is so short in 
small-signal diodes that you don't even notice its effect at 
frequencies below 10 MHz or so. It's only when you get well above 
10 MHz that it becomes important. 

The solution is a special-purpose device called a Schottky diode. 
This type of diode has no depletion layer, which eliminates the 
stored charges at the junction. The lack of charge storage means the 
Schottky diode can switch off faster than an ordinary diode. In fact, 
a Schottky diode can easily rectify frequencies above 300 MHz.  

The most important application of Schottky diodes is in digital 
computers. The speed of computers depends on how fast their 
diodes and transistors can turn on and off. This is where the 
Schottky diode comes in. Because it has no charge storage, the 
Schottky diode has become the backbone of low-power Schottky 
TTL, a group of widely used digital devices. 

A final point: In the forward direction, a Schottky diode has a 
barrier potential of only 0.25 V. Therefore, you may see Schottky 
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diodes used in a low-voltage bridge rectifiers because you have to 
subtract only 0.25 instead of the usual 0.7 V for each diode. 
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The Varactor 

The varactor (also called the voltage-
variable capacitance, varicap, epicap, 
and tuning diode) is widely used in 
television receivers, FM receivers, and 
other communications equipment. Here 
is the basic idea. In Fig. 5-14a, the 
depletion layer is between the p region 
and the n region. The p and n regions are 
like the plates of a capacitor, and the 
depletion layer is like the dielectric, 
When a diode is reverse-biased, the 
width of the depletion layer increases 
with the reverse voltage. Since the 
depletion layer gets wider with more 
reverse voltage, the capacitance becomes 
smaller. It's as though you moved apart 
the plates of a capacitor. The key idea is 
that capacitance is controlled by voltage. 

 

 

 

 

Figure 5-14b shows the equivalent circuit for a reverse-biased 
diode. At higher frequencies, the varactor acts the same as a 
variable capacitance. Figure 5-14d shows how the capacitance 
varies with reverse voltage. This graph shows that the capacitance 
gets smaller when the reverse voltage gets larger. The really 
important idea here is that reverse voltage controls capacitance. 
This opens the door to remote control. 

Figure 5-14c shows the schematic symbol for a varactor. How is this 
device used? You can connect a varactor in parallel with an 
inductor to get a resonant circuit. Then you can change the reverse 
voltage to change the resonant frequency. This is the principle 
behind tuning in a radio station, a TV channel, etc. 

 

Figure 5–14 — Varactor (a) Structure: (b) Equivalent 
Circuit; (c) Schematic Symbol; (d) Graph 
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Varistors  

Lightning, power-line faults, etc., can pollute the line voltage by 
super imposing dips, spikes, and other transients on the normal 115 
V rms. Dips are severe voltage drops lasting microseconds or less. 
Spikes are short over voltages of 500 to more than 2000 V. In some 
equipment, filters are used between the power line and the primary 
of the transformer to eliminate the problems caused by line 
transients. 

One of the devices used for line filtering is the varistor (also called a 
transient suppressor). This semiconductor device is like two back-to-
back zener diodes with a high breakdown voltage in both 
directions. For instance, a V130LA2 is a varistor with a breakdown 
voltage of 184 V (equivalent to 130 V rms) and a peak current rating 
of 400 A. Connect one of these across the primary winding, and you 
don't have to worry about spikes. The varistor will clip all spikes at 
the 184-V level and protect your equipment. 
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Reading a Data Sheet 

The Appendix shows the data sheet for the 1N746 series of zener 
diodes. This data sheet also covers the 1N957 series and the 1N4370 
series. Refer to these data sheets during the following discussion. 
Again, most of the information on a data sheet is for designers, but 
there are a few items that even troubleshooters and testers will 
want to know about. 

Maximum Power 

The power dissipation of a zener diode equals the product of its 
voltage and current: 

PZ = VZIZ         (5-9) 

For instance, if VZ = 12 V and IZ = 10 mA, then 

PZ = (12 V)(10 mA) = 120 mW 

As long as PZ is less than the power rating, the zener diode can 
operate in the breakdown region without being destroyed. 
Commercially available zener diodes have power ratings from 4 to 
more than 50 W. 

For example, the data sheet for the 1N746 series lists a maximum 
power rating of 400 mW. A safe design includes a safety factor to 
keep the power dissipation well below this 400-mW maximum. As 
mentioned elsewhere, safety factors of 2 or more are used for 
conservative designs. 

Maximum Current 

Data sheets usually include the maximum current a zener diode 
can handle without exceeding its power rating. This maximum 
current is related to the power rating as follows: 

Z

ZM

V

P
IZM    (5-10) 

where IZM = maximum rated zener current 

   PZM = power rating 



 

Power Production Test Technician April, 2010  

Training  Page 90 

   VZ = zener voltage 
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For example, the 1N759 has a tenet voltage of 12 V. Therefore, it has 
maximum current rating of 

33.3mA
12

400mW


V
I ZM

 

The data sheet gives two maximum current ratings: 30 and 35 mA. 
Notice these values bracket our theoretical answer of 33.3 mA. The 
data sheet gives you two values because of the tolerance in the 
tenet voltage. 

If you satisfy the current rating, you automatically satisfy the 
power rating. For instance, if you keep the maximum zener current 
less than 33.3 mA, you are also keeping the maximum power 
dissipation less than 400 mW. If you throw in the safety factor of 2, 
you don't have to worry about a marginal design blowing the 
diode. 

Tolerance 

Note 1 on the data sheet shows these tolerances: 

lN4370 series:   10 percent, suffix A for + 5 percent units 

1N746 series:   10 percent, suffix A for +5 percent units 

1N957 series:  20 percent, suffix A for ~ 10 percent units, suffix B 

for  5 percent units 

For instance, a 1N758 has a zener voltage of 10 V with a tolerance of 

 10 percent, while the 1N758A has the same zener voltage with a 
tolerance of +5 percent. The 1N967 has a zener voltage of 18V with 

a tolerance of  20 percent. The 1N967A has the same zener 

voltages with a tolerance of   10 percent, and the 1N967B has the 

same voltage with a tolerance of  5 percent. 

Zener Resistance 

The tenet resistance (also called zener impedance) may be 
designated RZT or ZZT. For instance, the 1N961 has a tenet resistance 

of 8.5 . measured at a test current of 12.5 mA. As long as the 

zener current is above the knee of the curve, you can use 8.5   as 
the approximate value of the zener resistance. But note how the 

zener resistance increases at the knee of the curve (700  ). The 
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point is this: Operation should be at or near the test current, if at all 
possible. Then you know the zener resistance is relatively small. 
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The data sheet contains a lot of additional information, but it is 
primarily aimed at designers. If you do get involved in design 
work, then you have to read the data sheet carefully, including the 
notes that specify how quantities were measured. Data sheets vary 
from one manufacturer to the next, so you have read between the 
lines if you want to get to the truth. 

Derating 

The derating factor shown on a data sheet tells you how much you 
to reduce the power rating of a device. For instance, the 1N746 
series has a power rating of 400 mW for a lead temperature of 50¡C. 
The derating factor is given as 3.2 mW/ ¡C. This means that you 
have to subtract 3.2 mW for each degree above 50¡C . Even though 
you may not be involved in design, you have to be aware of the 
effect of temperature. If it is known that the lead temperature will 
be above 50¡C, the designer has to derate or reduce the power 
rating of the zener diode. 

Troubleshooting 

Figure 5-15 shows a zener regulator. When the circuit is working 
properly, the voltage between node A and ground is +18 V, the 
voltage between A node B and ground is + l0 V, and the voltage 
between node C and ground is + 10 V. 

Now, let's discuss what can go wrong with the circuit. When a 
circuit is not working as it should, a troubleshooter usually starts 
by measuring node voltages. These voltage measurements give 
clues that help isolate the trouble. For instance, suppose he or she 
measures these node voltages 

VA = + 18 V  VB = + 10 V VC = 0 

When you are trying to figure out what causes incorrect voltages, 
trial and error is useful. That is, you play the what-if game. Here is 
what may go through a troubleshooter's mind after measuring the 
foregoing node voltages. 
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Figure 5–15 
Zener Regulator 

What if the load resistor were open? No, the load voltage would 
still be + 10 V. What if the load resistor were shorted? No, that 
would pull nodes B and C down to ground, producing 0 V. All 
right, what if the connecting wire between nodes B and C were 
open? Yes, that would do it. That's got to be it. 

This trouble produces unique symptoms. The only way you can get 
this set of voltages is with an open connection between nodes B and 
C. 

Not all troubles produce unique symptoms. Sometimes, two or 
more troubles produce the same set of voltages. Here is an 
example. Suppose the troubleshooter measures these node 
voltages: 

VA = +18V VB = 0 VC = 0 

What do you think the trouble is? Think about this for a few 
minutes. When you have an answer, read what follows. 

Here is a way that a troubleshooter might find the trouble. The 
thinking goes like this: 

I've got voltage at A, but not at B and C. What if the series resistor 
were open? Then no voltage could reach node B or node C, but I 
would still measure + 18 V between node A and ground. Yes, the 
series resistor is probably open. 

At this point, the troubleshooter would disconnect the series 
resistor and measure its resistance with an ohmmeter. Chances are 
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that it would be open. But suppose it measures okay. Then the 
troubleshooter's thinking continues like this: 

That's strange. Well, is there any other way I can get +18 V at node 
A and 0 V at nodes B and C? What if the zener diode were shorted? 
What if the load resistor were shorted? What if a solder splash were 
between node B or node C and ground. Any of these will produce 
the symptoms I'm getting. 

Now, the troubleshooter has more possible troubles to check out. 
Eventually, she or he will find the trouble. 

When components burn out, they usually become open, but not 
always. Some semiconductor devices can develop internal shorts, 
in which case, they are like zero resistances. Other ways to get 
shorts include a solder splash between traces on a printed-circuit 
board, a solder ball touching two traces, etc. Because of this, you 
must include what-if questions in terms of open components, as 
well as open components. 

Example 5–8 

Assume an ideal zener diode and work out the node voltages for all 
possible shorts and opens in Fig. 5-15. 

Solution 

In working out the voltages, remember this. A shorted component 
is equivalent to a resistance of zero, while an open component is 
equivalent to a resistance of infinity. If you have trouble calculating 

with 0 and ∞ then use 0.001  and 1000 M  . In other words, use 
a very small resistance for a short and a very large resistance for an 
open. 

To begin, the series resistor RS may be shorted or open. Let us 
designate these RSS and RSO, respectively. Similarly, the zener diode 
may be shorted or open, symbolized by D1S and D10. Also, the load 
resistor may be shorted or open, RLS and RLO. Finally, the 
connecting wire between B and C may be open, designated BCO. 

If the series resistor were shorted, + 18 V would appear at nodes B 
and C. This would destroy the zener diode and possibly the load 
resistor, but the voltage would remain at + 18 V. Then a trouble-
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shooter would measure VA = +18 V, VB = + 18V, and VC = +18V. 
This trouble and its voltages are shown in Table 5-1. 

If the series resistor were open, then the voltage could not reach 
node B. In this case, nodes B and C would have zero voltage. 
Continuing like this, we can get the remaining entries shown in 
Table 5-1. 
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In Table 5-1, the comments indicate troubles that might occur as a 
direct result of the original short circuits. For instance, a shorted RS 

will destroy the zener diode and may also burn out the load 
resistor. It depends on the power rating of the load resistor. A 

shorted RS means there's 18 V across k . This produces a power of 
0.324 W. If the load resistor is rated at only 0.25 W, it will burn out. 

Study the table. You can learn a lot from it. Also, use the T-shooter 
at the end of this chapter to practice troubleshooting a zener 
regulator. 

 

Table 5–1 
Zener Regulator Troubles and Symptoms 
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Optional Topics 

The following material continues the earlier discussions at a more 
advanced and specialized level. All the topics are optional because 
they are not used in any of the basic discussions in later chapters. 
This section will be a useful reference when you are in industry 
because then you will probably want more advanced viewpoints. 

Load Lines 

The current through the zener diode of Fig. 5-
16a is given by 

S

ZS

S
R

VV
I


    (5-11) 

This says the zener current equals the voltage 
across the series resistor divided by the 
resistance. Equation (5-11) can be used to 
construct load line as previously discussed. 
For instance, suppose VS = 20 V and RS = 1 k

 . Then the foregoing equation reduces to 

1000

20 Z
S

V
I


  

As before, we get the saturation point (vertical 
intercept) by setting VZ equal to zero and 
solving for IZ to get 20 mA. Similarly, to get 
the cutoff point (horizontal intercept), we set 
IZ equal to zero and solve for VZ to get 20 V. 

The following study aids will help to reinforce the ideas discussed 
in this chapter. For best results, use these study aids within 6 hours 
of reading the earlier material. Then review these study aids a week 
later and month later to ensure that the concepts remain in your 
long-term memory. 

 

Figure 5–16 
Zener Diode 

Circuit 
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Summary 

Sec. 5-1 The Zener Diode 

This is special diode optimized for operation in the breakdown 
region. Its main use is in voltage regulators, circuits that hold the 
load voltage constant. Ideally, a zener diode is like a perfect 
battery. To a second approximation, it has bulk resistance that 
produces a small additional voltage. 

Sec. 5-2 The Loaded Zener Regulator 

When a zener diode is in parallel with a load resistor, the current 
through the current-limiting resistor equals the sum of the zener 
current and the load current. The process for analyzing zener 
regulator consists of finding the series current, load current, and 
zener current (in that order.) 

Sec. 5-3 Optoelectronic Devices 

The LED is widely used as an indicator on instruments, calculators, 
and other electronic equipment. By combining seven LEDs in a 
package, we get a seen-segment indicator. Another important 
optoelectronic device is the optocoupler, which allows us to couple 
a signal between two isolated circuits. 

Sec. 5-4 The Schottky Diode 

The reverse recovery time is the time it takes a diode to shut off 
after it is suddenly switched from forward to reverse bias. This 
time may only be a few nanoseconds, but it places a limit on how 
high the frequency can be in rectifier circuit. The Schottky diode is 
a special diode with almost zero reverse recovery time. Because of 
this, the Schottky diode is useful at high frequencies where short 
switching times are needed. 

Sec. 5- 5 The Veractor 

The width of the depletion layer increases with the reverse voltage. 
This is why the capacitance of a varactor can be controlled by the 
reverse voltage. This leads to remote tuning of radio and television 
sets. 
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Sec. 5-6 Varistors 

These protective devices are used across the primary winding of a 
transformer to prevent voltage spikes from damaging or otherwise 
polluting the in and out voltage to the equipment. 

Sec. 5-7 Reading a Data Sheet 

The most important quantities on the data sheet of zener diodes are 
the zener voltage, the maximum power rating, the maximum 
current rating, and the tolerance. Designers also need the zener 
resistance, the derating factor, and a few other items. 

Sec. 5-8 Troubleshooting 

Troubleshooting is an art and a science. Because of his, you can 
only learn so much from a book. The rest has to be learned from 
direct experience with circuits in trouble. Because trouble-shooting 
is an art, you have to ask What if? Often and feel your way to a 
solution. 

Vocabulary 

In your own words, explain what each of the following terms 
mean. Keep your answers short and to the point. If necessary, 
verify your answer by rereading the appropriate discussion or by 
looking at end-of-book Glossary. 

Light emitting diode (LED) temperature coefficient 

open     varactor 

optocoupler    varistor 

photodiode    voltage regulator 

photodiode    zener resistance 

process    zener voltage 

Schottky diode   short 
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Important Equations 

The following formulas are useless if you don’t know what they 
mean in words. Suggestion: Look at each formula, then read the 
words to find out what it means.. Your chances of learning and 
remembering are much better if you concentrate on words rather 
than formulas. 

Eq. 5-1 Current through Series Resistor 

S

ZS
S

R

VV
I

_
  

This is an equation that you do not have to memorize. It says the 
current through the series resistor equals the voltage across the 
series resistor divided by the resistance. It is another example if 
Ohm’s law, where the voltage is the difference of the node voltages 
of the ends of a resistor. 

Eq. 5-2 Thevenin Voltage 

S

LS

L
TH V

RR

R
V


  

This is the voltage across the load resistor when the zener diode is 
disconnected. One way to remember it this: VS divided by RS + RL 
is the load current. Multiply this load current by RL and you get 
VTH. The value of VTH has to be larger than the zener voltage to get 
voltage regulation. 

Eq. 5-6 Zenner Current 

IZ = IS - IL 

This is disguised form of Kirchhoff’s current law. It says the zener 
current equals the difference between the series current and load 
current. To use it, you must already have carried out the two 
preceding steps in the process: 1. Find IS2. Find IL. 
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Eq. 5-7 Zenner Power 

PZ = VZIZ 

The zener power equals the zener voltage times the zener current. 
This power has to be less than the maximum power rating listed on 
the data sheet. Otherwise, you may burn out or seriously degrade 
the characteristics of the zener diode. 

Eq. 5-8 LED Current 

S

DS

R

VV
IS


  

This gives you the current through a resistor in series with a LED. It 
says the current equals the voltage across the series resistor divided 
by the resistance. Use 2 V for the value of VD, unless you have a 
more accurate value for the voltage across the LED. 
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Questions 

The following may have more than one right answer, Select the best 
answer. This is the one that is always true, or covers more 
situations, etc. 

1. What is true about the breakdown voltage in a zener diode? 

a. It decreases when current increases. 

b. It destroys the diode. 

c. It equals the current times the resistance. 

d. It is approximately constant. 

2.  Which of these is the best description of a zener diode? 

a. It is a diode. 

b. It is a constant-voltage device. 

c.  It is a constant-current device. 

d.  It works in the forward region. 

3. A zener diode 

a. Is a battery 

b.  Acts like a battery in the breakdown region 

c. Has a barrier potential of 1 V 

d.  Is forward-biased 

4. The voltage across the zener resistance is usually 

a. Small 

b. Large 

c.  Measured in volts 

d. Subtracted from the breakdown voltage 

5. If the series resistance decreases in an unloaded zener regulator, 
the zener current 

a. Decreases 

b. Stays the same 

c. Increases 

d. Equals the voltage divided by the resistance 
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6.  In the second approximation, the total voltage across the zener 
diode is the sum of the breakdown voltage and the voltage 
across the 

a. Source 

b.  Series resistor 

c.  Zener resistance 

d,  Zenerdiode 

7. The load voltage is approximately constant when a zener diode 
is 

a.  Forward-biased 

b. Reverse-biased 

c.  Operating in the breakdown region 

d.  Unbiased 

8.  In a loaded zener regulator, which is the largest current? 

a.  Series current 

b.  Zener current 

c.  Load current 

d.  None of these 

9.  If the load resistance decreases in a zener regulator, the zener 
current 

a. Decreases 

b.  Stays the same 

c.  Increases 

d.  Equals the source voltage divided by the series 
resistance 

10. If the load resistance decreases in a zener regulator, the series 
current 

a.  Decreases 

b.  Stays the same 

c.  Increases 
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d.  Equals the source voltage divided by the series 
resistance 
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11.  When the source voltage increases in a zener regulator, which 
of these currents remains approximately constant? 

a.  Series current 

b.  Zener current 

c.  Load current 

d.  Total current 

12.  If the zener diode in a zener regulator is connected with the 
wrong polarity, the load voltage will be closest to 

a.  0.7 V 

b.  10 V 

c.  14 V 

d.  18 V 

13.  At high frequencies, ordinary diodes don't work properly 
because of 

a.  Forward bias 

b.  Reverse bias 

c.  Breakdown 

d.  Charge storage 

14.  The capacitance of a varactor diode increases when the reverse 
voltage across it 

a.  Decreases 

b.  Increases 

c.  Breaks down 

d.  Stores charges 

15. Breakdown does not destroy a zener diode, provided the 
zener current is less than the 

a.  Breakdown voltage 

b.  Zener test current 

c.  Maximum zener current racing 

d.  Barrier potential 



 

Power Production Test Technician April, 2010  

Training  Page 107 

16.  To display the digit 8 in a seven-segment indicator, 

a.  C must be lighted 

b.  G must be off 

c.  F must be on 

d.  All segments must be lighted 

17.  A photo diode is normally 

a.  Forward-biased 

b.  Reverse-biased 

c.  Neither forward- nor reverse-biased 

d.  Emitting light 

18.  When the light increases, the reverse minority-carrier 
current in a photodiode 

a.  Decreases 

b.  Increases 

c. Is unaffected 

d.  Reverses direction 

19.  The device associated with voltage-controlled capacitance is 
a 

a.  LED 

b.  Photodiode 

c.  Varactor diode 

d.  Zenerdiode 

20.  If the depletion layer gets wider, the capacitance 

a.  Decreases 

b.  Stays the same 

c.  Increases 

d.  Is variable 
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21.  When the reverse voltage increases, the capacitance 

a.  Decreases 

b.  Stays the same 

c.  Increases 

d.  Has more band width 

22.  The varactor is usually 

a.  Forward-biased 

b.  Reverse-biased 

c.  Unbiased 

d.  In the breakdown region 

Basic Problems 

Sec. 5-1 The Zener Diode 

5-1. An unloaded zener regulator has a source voltage of 20V, a 

series resistance of 330 , and a zener voltage of 12 V. What 
is the zener current? 

5-2.  If the source voltage in Prob. 5-1 varies from 20 to 40 V, what 
is the maximum zener current? 

5-3.  If the series resistor of Prob. 5-1 has a tolerance of  10 
percent, what is the maximum zener current? 

Sec. 5-2 The Loaded Zener Regulator 

5-4. If the zener diode is disconnected in Fig. 5-23, what is the 
load voltage? 

5-5.  Assume the supply voltage of Fig. 5-23 decreases from 20 to 
O V. At some point along the way, the zener diode will stop 
regulating: Find the supply voltage where regulation is lost. 

5-6. Calculate all three currents in Fig. 5-23. 

5-7.  Assuming a tolerance of   10 percent in both resistors of Fig. 
5-23, what is the maximum zener current? 
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5-8. Suppose the supply voltage of Fig. 5-23 can vary from 20 to 
40 V. What is the maximum zener current? 

5-9.  What is the power dissipation in the resistors and zener 
diode of Fig. 5-23? 

5-10. The zener diode of Fig. 5-23 is replaced with a IN961. What 
are the load voltage and the zener current? 

5-11. The zener diode of Fig. 5-23 has a zener resistance of 11.5 . 
If the power supply has a ripple of I V, what is the ripple 
across the load resistor? 

5-12. Draw the schematic diagram of a zener regulator with a 

supply voltage of 25 V, a series resistance of 470  , a zener 

voltage of I5 V, and a load resistance of 1 k . What are the 
load voltage and the zener current? 

Sec. 5-3 Optoelectronic Devices 

5-13. What is the current through the LED of Fig. 5-24? 

5-14. If the supply voltage of Fig. 5-24 increases to 40 V, what is the 
LED current? 

5-15. If the resistor is decreased to 1 k , what is the LED current 
in Fig. 5-24? 
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Solutions for Odd Numbered Questions 

 

5-1.  24.2 mA  

5-3.  26.9 mA  

5-5.  14.6 V  

5-7.  19.6 mA  

5-9.  Ps is 194 mW, PL is 96 mW, and Pt is 195 mW 

5-11.  33.7 mV  

5-13.  5.91 mA  

5-15.  13 mA  

5-17.  200 mW 

5-19.  11.4 V, 12.6 V  

5-21.  a. O b. 16.4 V c. O d. O  

5-23.  Check for a short across the 330 R. 

5-25.  12.2 V  

5-27.  Many designs are possible here. One design is a 1N754, a 
series resistance of 270 R, and a load resistance of 220 R. This 
design results in a series current of 48.9 mA, a load current 
of 30.9 mA, zener current of 18 mA.  

5-29.  26 mA  

5-31.  7.98 V  

5-33.  Trouble 2: Wire ED open  

5-35.  Trouble 5: No supply voltage 
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Ohm’s Law and Power 

 

The following examples are designed to reinforce your 
understanding of the use of Ohm’s law and power formulas with 
scientific notation. 

All of the examples involve the use of powers of ten with one 
exception. Example 5 illustrates the proper use of the P-12-R circle 
formula to find the current flowing in a simple circuit. This 
involves taking the square root of a number. Since the procedure 
for finding square roots of quantities expressed in scientific 
notation is covered in Lesson 10, only very simple numbers are 
used in the example. 

1. In the simple circuit shown, a voltage is applied to a resistor and current 

flows through the resistor. Use Ohm’s law to find the applied voltage if 

the current is 5 mA and the resistance is 3 kilohms. 

  

 

a. Draw the circle formula for Ohm’s law. 

b. Cover the quantity you want to find with your 

thumb; in this case, cover E. Remember, a 

vertical line tells you to multiply the quantities 

on either side of the line and a horizontal line 

tells you to divide the bottom quantity into the 

top. 
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E = 1 X R c. The resulting formula is E = 1 X R. 

E = 5 mA X 3k d. Substitute the values of voltage and current in 

the formula 

E = 5 X 10-3 X 3 X 10+3 e. Convert to powers of ten. 

E = 15 X 100 f. Multiply the leading numbers and combine the 

exponents. In this case, +3 and -3 equal zero. 

E = 15 volts g. Convert to metric prefixed form. Because 100 = 

1, the answer can best be expressed directly in 

units, E = 15 volts. 

 

2. Given the same circuit as in Example 1, use Ohm’s law to find the current 

flowing when the voltage is 12.6 volts and the resistance is 820 ohms. 

 

a. Draw the circle formula for Ohm’s law. 

b. Cover the quantity you want to find with your 

thumb; in this case, cover I. 

I = 
E

R
 c. The resulting formula is I = 

E

R
 

I = 
12.6  V

820
 

d. Substitute the values of voltage and resistance 

in the formula. 

I = 
1.26  X  10

1

8.2  X  102
 

e. Convert to powers of ten. 

I = 
1.26 X  10

12

8.2
 

f. Bring the bottom exponent across the division 

line, up to the top and change its sign. 

I = 
1.26  X  10

1

8.2
 

g. Combine the exponents. Here a +1 and a -2 

equal -1. 

I = .154 X 10-1 h. Divide the leading numbers and round off. 

I = 15.4 mA I. Convert to metric prefixed form. 

  

3. Again considering the same circuit as before, find the power dissipated 

by the resistor when the applied voltage is 45 volts and the current flowing 

through the resistor is 16 mA. 
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a. Draw the P-I-E circle formula for power. 

b. Cover the quantity you want to find with your 

thumb; in this case, cover P. 

P = I X E c. The resulting formula is P = I X E. 

P = 16 mA X 45 V d. Substitute the values of voltage and current in 

the formula. 

P = 16 X 10-3 X 4.5 X 10+1 e. Convert to powers of ten. 

P = 72 X 10-2 f. Multiply the leading numbers and combine the 

exponents. In this case, -3 and +1 equal -2. 

P = 720 mW g. Convert to metric prefixed form. A 1-watt 

resistor would be appropriate for this example. 

 

4. In a simple circuit, find the power dissipated by a 100-ohm resistor when 

the current flowing through it is 50 mA. 

 

 

a. Since you know I and R, and need to find P, 

select the P-12-r circle formula for power. 

b. Cover the quantity you want to find with your 

thumb; in this case, cover P. 

P = 12 X R c. The resulting formula is P = 12 X R. 

P = (50 MA)2 X 100 d. Substitute the values of current and resistance 

in the formula. 

P = (5 X 10-2) X (5 X 10-2) 

X 1 X 10+2 

e. Convert to powers of ten. Since 50 mA equal 5 

X 10-2, the square of 50 mA equals 5 X 10-2 times 

5 X 10-2. 

P = 25 X 10-4 X 1 X 10+2 f. Multiply 5 X 10-2 by itself remembering to add 

the exponents. Here -2 and -2 equals -4. 

P = 25 X 10-2 g. Multiply again and add the exponents. Here -4 

and +2 equals -2. 

P = 250 mW h. Convert to metric prefixed form. A 1/2-watt 

resistor would be used in this example. 

 

5. Given a simple circuit, find the current flowing through a 4-ohm resistor 

when the resistor is dissipating 100 watts of power. 

 



 

Power Production Test Technician April, 2010  

Training  Page 114 

 

a. Here you know P and R, and need 1, so draw 

the P-12-R circle formula. 

b. Cover the quantity you want to find with your 

thumb; in this case cover I2. 

I2 = 
P

R
 c. The resulting formula is I2 = 

P

R
. 

I2 = 
100 W

4 
 

d. Substitute the values of power and resistance 

in the formula. 

I2 = 25 e. Divide; note that the result is the square of 

current. 

I = 25  f. To get the current, you must then find the 

square root of 25. 

I = 5 A g. If you have a calculator with a square root key, 

enter 25, press the square root key, and the 

answer, 5, will appear in the display. You may 

also use the square root tables in the 

Appendix. To find the square root of 25, look up 

25 in the table, and look across to the column 

labeled square roots (      ) where you should 

see “5.” 

 

6. If the voltage applied to a 3.3 kilohm resistor in a simple circuit is 15 volts, 

find the power dissipated by the resistor. 

 

 

a. Here you know E and R and need to find P, so 

draw the E2-R-P circle formula. 

b. Cover the quantity you want to find with your 

thumb; in this case, cover P. 

P = 
E

2

R
 c. The resulting formula is P = 

E
2

R
. 

P = 
(15 V)

2

3.3  k
 

d. Substitute the values of voltage and resistance 

in the formula. 

P = 

(1.5  X  10
1

)  X  (1.5  X  10
1

)

3.3  X  10
3

 

e. Convert to powers of ten. Since 15 volts equals 

1.5 X 10+1, the square of 15 volts equals 1.5 X 

10+1 times 1.5 X 10+1. 

P = 
2.25 X  10

2

3.3 X  103
 

f. Square 1.5 X 10+1 by multiplying it by itself, 

remembering to add the exponents. 
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P = 
2.25 X  10

23

3.3
 

g. Bring the bottom exponent across the division 

line, up to the top and change its sign. 

P = 
2.25 X  10

1

3.3
 

h. Combine the exponents; here +2 and -3 equals 

-1. 

P = .682 X 10-1 I. Divide the leading numbers and round off. 

P = 68.2 mW j. Convert to metric prefixed form. 

7. In the simple circuit shown below, the applied voltage forces current to 

flow through the resistor. If the voltage is increased while the resistance 

remains constant, the current will increase. Remember, in a circuit with a 

constant resistance, voltage and current vary directly. 

 On the chart next to the circuit, the increase in voltage is indicated by an 

arrow pointing up (), the constant resistance is indicated by a dot (•), 

and the resulting increase in current flow is also indicated by an arrow 

point up (). In a direct relationship, when one quantity increases, the 

other quantity decreases. Using this information and considering the 

simple circuit shown, complete the chart by filling in the blank spaces with 

the appropriate symbol: 

  means the quantity increases 

  means the quantity decreases 

 • means the quantity remains constant 
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Practice Problems 

 

1. 

 

 

 

 

2. 

 

 

 

3. 

 

 

 

 

4. 
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5. 

 

 

 

 

6. 

 

 

 

 

7. 

 

 

 

 

8. 

 

 

 

 

 

 

 

 

 



 

Power Production Test Technician April, 2010  

Training  Page 119 

Solutions for Odd Numbered Questions 

1. I = 21.8 A 

 P = 39.9 mW 

2. P = 78.2 W 

 R = 7.82 k 

3. E = 682 V 

 P = 46.5 W 

4. R = 20.0  

 P = 10 W 

5. I = 21.6 mA 

 P = 163 mW 

6. R = 5.2 k 

 P = 2.82 mW 

7. P = 224 W 

 R = 151 k 

8. I = 53.8 mA 

 P = 565 mW 
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Introduction to Parallel Circuits 

 

Worked Through Examples 

1. Find the total resistance of the following circuit. 

                      

 There are two options that may be taken to find RT. The 
product-over-sum formula or the sum of the reciprocal formula. 
This first example will use the product-over-sum formula: 

RT = 
R1  X  R2

R1    R2

 

 First, substitute the circuit values in correct powers of ten form. 

RT = 
8.0  X  10

2

 X  3.3 X  10
3

8.0  X  10
2

   33.0  X  10
2  

 To add, the exponents of the numbers in the denominator (or 
bottom) of this equation must be the same. Changing the 3.3 X 
10+3 to 33.0 X 10+2, you have 

RT = 
8.0  X  10

2

 X  3.3 X  10
3

8.0  X  10
2

   33.0  X  10
2  

 Add 
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RT = 8.0  X  10
2

 X  3.3 X  10
3

41   102
 

 Multiply the numbers on top. (Remember to add the exponents 
when multiplying.) 

RT = 
26.4  X  10

5

41 X  102
 

 Now you may divide 26.4 X105 by 41 X 102. (Remember to do 
this you bring the bottom exponent up above the division line 
and change its sign.) 

RT = 
26.4  X  10

5 2

41
 

 Then combine these top exponents 

RT = 
26.4  X  10

3

41
 

RT = 6.44 X 102 = 644  

2. Find the total resistance of the circuit shown below. 

 

 This time the reciprocal formula will be used to solve this 
problem. 

 First, substitute the circuit values into the formula: 

RT = 
1

1/ R1    1/ R2    1/ R3

 

RT = 
1

1

1.0  X  103
   

1

8.2 X  102
   

1

1.5 X  103

  

 Find the reciprocals of the resistance values. (Divide the 
resistance value into 1.) This gives you the individual 
conductances which go into the bottom of this equation. 
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RT = 
1

1 X  103    1.22 X  103    6.67 X  104
 

 Add all individual conductances in the bottom of this equation. 
(Remember to change all exponents to the same number; here, 
10-3.) 

RT = 
1

2.89 X  103
 

 Now divide 2.89 X 10-3 into 1 to find the total resistance. 

RT = 3.46 X 102 = 346  

3. Find the approximate resistance of the circuit shown below. 
(Use the quickest method.) 

                            

 Since the three resistors are equally sized, the “shortcut” 
formula may be used. 

Req = 
R5

N
 

R5 = Same size resistor resistance (4.7 k) 

N = Number of resistors (3). 

 Substituting 

Req = 
4.7  k

3
 

 Change 4.7 k to proper powers of ten notation 

Req = 
4.7  X  10

3

3
 

 Divide 

Req = 1.57 X 103 = 1570  

 

4. Define the term “Branch.” 
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 A branch in an electrical circuit is simply a separate path 
through which electrical current can flow. In other words, a 
series circuit has only one branch. A parallel circuit has two or 
more branches. 

5. Find the Req of the following circuit. 

                                 

 This problem will be worked using an SR-50 type calculator. 
This reciprocal formula will be used to solve the problem. 

 Enter the first number in correct powers of ten form. 

1.5  EE  3 

 Press the reciprocal key and store that number in the 
calculator’s memory. 

1/X     STO 

 Enter the other two numbers using the same procedure as 
outlined above except rather than pressing the “STO” key, press 

the      key which adds the displayed number to the number 
held in memory. 

2.2   EE   3   1/X   

3.3   EE   3   1/X   

 The reciprocals of all three numbers have been found and 
added together. 

 This number may be recalled by pressing the “RCL” key. 

RCL 

 Now, this number must be divided into 1, so press the 
reciprocal key. 

1/X 

 Your answer appears on the display. 

7.021276596  02 
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 This number is rounded to 

7.02 X 102 or 

702  
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Practice Problems 

The key objective of this lesson has been achieved if you can 
calculate the total resistance of any basic parallel circuit. To gain 
some practice in this area, the problems below are provided. 

Depending upon the approach you use to solve these problems and 
how you round off intermediate results, your answers may vary 
slightly from those given here. However, any differences you 
encounter could only occur in the third significant digit of your 
answer. If the first two significant digits of your answers do not 
agree with those given here, recheck your calculations.  

Find RT for each of the following circuits. 

 

1. 

 

 

 

2. 

 

 

 

3. 

 

 

 

4. 
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5. 

 

 

 

 

6. 

 

 

 

7. 

 

 

 

 

8. 

 

 

 

9. 
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10. 

 

 

 

11. 

 

 

 

12. 

 

 

 

13. 

 

 

 

14. 
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15. 

 

 

 

16. 

 

 

 

17. 

 

 

 

18. 

 

 

 

19. 
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Answers 

1. 8.52  

2. 3.07 k 

3. 368 k 

4. 53.5  

5. 1.58 k 

6. 49.7  

7. 918  

8. 13.8  

9. 846  

10. 1.71 k 

11. 174 k 

12. 133  

13. 27.9 k 

14. 1.55  

15. 9.41  

16. 679 m 

17. 268 k 

18. 129  

19. 907  

 

  



 

Power Production Test Technician April, 2010  

Training  Page 130 



 

Power Production Test Technician April, 2010  

Training  Page 131 

Series-Parallel Circuits 

 

Worked Through Examples 

1. In the series-parallel circuit shown, calculate the total equivalent 
resistance and all unknown voltages and currents using Ohm’s 
law and circuit reduction techniques. 

                      

 First, you can find RT by circuit reduction techniques. Since R2 
and R3 are of equal value and are connected in parallel, the 
equivalent resistance, R2,3 can be found with the formula: 

Req = 
RS

N
 

 RS equals 18 kilohms and N equals 2, so: 

R2,3 = Req = 
RS

N
 = 

18 k

2
 

R2,3 = 9 k 

 After the first circuit reduction, the circuit now consists of R1 in 
series with R2,3 as shown. 



 

Power Production Test Technician April, 2010  

Training  Page 132 

                      

 You can find the total resistance of the circuit by simply using 
the series circuit law which says that the total resistance of a 
series circuit equals the sum of the individual resistances. In 
formula form: 

RT = R1 + R2 + R3 + . . . 

 or in this case: 

RT = R1 + R2.3 

RT = 15 k + 9 k 

RT = 24 k 

                               

 Once you know the total resistance, you can find the total 
current by using Ohm’s law in the form IT = ET/RT. Substituting 
the appropriate values in the formula gives: 

IT = 
ET

RT
   

72 V

24 k
 

IT = 3 mA 

 This total current can be used to find the voltage across R1. 
Remember, since R1 is in series with the rest of the circuit, the 
total current must flow through R1. If you use Ohm’s law in the 
form E = 1 X R and substitute the appropriate values, you get: 
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ER1 = IT X R1 

ER1 = 3 mA X 15 k 

ER1 = 45 V 

     

 Remember that in a series circuit the total voltage equals the 
sum of the individual voltage drops. You know the total voltage 
and the voltage across R1; the remainder of the voltage must be 
dropped across R2,3. In formula form: 

ER2,3 = ET -ER1 

ER2,3 = 72 V - 45 V 

ER2,3 = 27 V 

 You can find the current through R2 or R3 by using Ohm’s law 
in the form I = E/R. Remember, R2 and R3 are in parallel, so 
they have the same 27 volts dropped across them. 

IR2 = 
ER2

R2
   

27 V

18 k
 

IR2 = 1.5 mA 
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 Since R2 and R3 have the same resistance value and the same 
voltage across them, they have the same current flow through 
them. You could have found the current through R2 and R3 by 
simply realizing that they must divide the total current of 3 
milliamps equally between them. 

IR2 = IR3 = 
IT

2
   

3  mA

2
 

 If R2 and R3 did not have the same resistance value, you could 
have found the current through R3 by subtraction. You know 
the total current and you know the current through R2, so the 
remainder of the current must flow through R3. 

IR3 = IT - IR2 

IR3 = 3 mA - 1.5 mA 

IR3 = 1.5 mA 

 and the circuit is completely solved. 

2. In the series-parallel circuit shown, calculate the total equivalent 
resistance and all unknown voltages and currents using Ohm’s 
law and circuit reduction techniques. 
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 In order to keep track of all the knowns and unknowns, make a 
chart as shown on the next page and fill in the known values. 
Then you can fill in the unknown values as you calculate them. 

 

 

 

 Notice that since R1 and R2 are in parallel, the voltage across 
them is the same. 

 You can use Ohm’s law in the form I = E/R to calculate IR1 and 
IR2. 

  IR1 = 
ER1

R1

  IR2 = 
ER 2

R2

 



 

Power Production Test Technician April, 2010  

Training  Page 136 

  IR1 = 36 V

10 k
  IR2 = 

ER 2

R2

 

  IR1 = 3.6 mA  IR2 = 2.4 mA 

 You know that the total current in a parallel circuit equals the 
sum of the individual branch currents. In this circuit, the total 
current flows through the combination of R1 and R2; you can 
add IR1 and IR2 to get IT. 

IT = IR1 + IR2 

IT = 3.6 mA + 2.4 mA 

 IT = 6.0 mA 

 You can now fill in these calculated values on the chart as 
shown. 

            

 Looking at the chart or the circuit, you can see that you know 
two things about R5, you know its resistance, and you know the 
current flow through it. You can use Ohm’s law in the form E = 
I X R to find ER5. 

ER5 = IR5 X R5 

ER5 = 2 mA X 27 k 

ER5 = 54 V 

 Because R3, R4, and R5 are in parallel, they have 54 volts 
dropped across them. If they all have the same voltage across 
them and they all have the same resistance value, then the 
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current must be the same through all of them. Since IR5 equals 2 
milliamps, the IR3 and IR4 also equal 2 milliamps each. 

                 

 You could check your work at this point by adding IR3, IR4 and 
IR5 to see that they do add up to the total current of 6 milliamps. 

 Because R6 is in series with the rest of the circuit, the total 
current must flow through it. Thus IR6 equals 6 milliamps and 
you can now use this information to find ER6. 

ER6 = IR6 X R6 

ER6 = 6 mA X 2 k 

ER6 = 12 V 

 As shown, you know the voltage across and current flow 
through each portion of the circuit.  
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 The voltage across R1 and R2 is the same; ER1,2 equals 36 volts. 
The voltage is also the same across R3, R4, and R5; ER3,4,5 equals 
54 volts. You also know the voltage across R6; ER6 equals 12 
volts. From series circuit laws, these voltages can be added to 
find the total voltage applied to the circuit. 

ET = ER1,2 + ER3,4,5 + ER6 

ET = 36 V + 54 V + 12 V 

ET = 102 V 
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 The only unknown quantity remaining to be calculated is the 
total resistance. This can be found in either of two ways. One 
way is to use Ohm’s law in the form: 

RT = 
ET

IT
 

 When you substitute the appropriate values in the formula, you 
obtain: 

RT = 
1 02  V

6  mA
 

RT = 17 k 

 Circuit reduction techniques can also be used to find RT. First, 
consider R1 in parallel with R2. Using the product-over-the-sum 
formula: 

R1,2 = 
R1  X  R2

R1    R2

 

R1,2 = 
10 k  X  15 k

10 k    15 k
 

R1,2 = (1 X  10
4

) X  (1.5 X  10
4

)

(1 X  104 )   (1.5 X  104 )
 

R1,2 = 
1.5 X  10

8

2.5   104
 

R1,2 = 0.6 X 10+4 = 6 k 

                          

 Because R3, R4 and R5 all have the same resistance value, they 
can be reduced to an equivalent resistance by using the formula: 
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Req = 
RS

N
 

Req = 
27 k

3
 

Req = 9 k 

 

 These three resistance are now in series and can be added to 
find RT. 

RT = R1,2 + R3,4,5 + R6 

RT = 6 k + 9 k + 2 k 

RT = 17 k 

 and this agrees with the previous calculation. 

 The chart can be filled in as shown, and the circuit is completely 
solved. 
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Practice Problems 

The key objective of this lesson has been achieved if you can 
analyze any series parallel circuit in a variety of situations such as: 

1. Given a series-parallel wired network of resistors, 
calculate their equivalent resistance, Req. 

2. Given a series-parallel circuit with all of the resistor 
values and the applied voltage labeled, calculate any or 
all of the voltages across and currents through each 
resistor, as well as the total circuit current and 
equivalent resistance. 

3. Given a series-parallel circuit schematic with several 
known values labeled, calculate any unknown values 
required. 

The practice problems that follow are designed to give you as much 
practice as you may need in these areas. It is suggested that you 
work enough of these to enable you to approach and analyze any 
series-parallel circuit without referring back to the lesson.  

Depending upon the approach you use in solving these problems 
and how you round off intermediate results, your answers may 
vary slightly from those given here. However, any differences you 
encounter should only occur in the third significant digit of your 
answer. If the first two significant digits of your answers do not 
agree with those given here, recheck your calculations. 
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Problems 

1. Find Req for the following circuits. 

 
 

2. 
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3. 
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4. 
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5. 
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Answers 

 

1. Req = 58.5 k 

 

2. Req = 7.39 k 

 

3. Req = 199  

 

4. Req = 1.61 k 

 

5. Req = 76.9 k 
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Introduction to Kirchhoff’s Law 

 

Worked Through Examples 

1. Write a node equation for the diagram shown below, substitute 
the appropriate currents and solve the equation for I5. Also 
indicate the direction of I5.  

                  

 From Kirchhoff’s current law you know that whatever current 
arrives at a junction must equal the current that leaves the 
junction. Write down the currents entering the junction on one 
side of an equals sign, and then write down the currents that 
leave the junction on the other side of the equals sign. 

Leaving  =  Entering 

I1 + I4  =  I2 + I3 

 On which side of the equals sign does I5 belong? If you 
substitute the values for I1 through I4 in the equation, you will 
see. 

Leaving  =  Entering 

2 A + 2.5 A  =  3.5 A + 4 A 

4.5 A  =  7.5 A 

 Obviously, 4.5 amps does not equal 7.5 amps, so I5 must belong 
with the 4.5 amp leaving the junction. 
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Leaving  =  Entering 

4.5 A + I5  =  7.5 A 

 In order for the currents leaving to equal the currents entering, 
I5 must be the right value so that there will be 7.5 amps leaving 
and entering the junction. I5 should be 3 amps leaving the 
junction. You can prove this by subtracting 4.5 amps from each 
side of the equation. 

4.5 A + I5  =  7.5 A 

-4.5 A             -4.5 A 

                I5  =      3A 

 Thus, I5 does equal 3 amps and it must leave the junction. 

 

2. Write a loop equation for the circuit shown below using electron 
current, and write another loop equation using conventional 
current. 

                        

 Step One: Assign a current direction. Any direction is fine but 
more than likely the actual direction of electron current is 
counterclockwise since E1 is larger than E2. Assume that the 
electron current is flowing in the counterclockwise direction 
and label it accordingly. 
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 Step Two: Traverse the circuit and write down all the source 
voltages and IR voltages according to the rules presented in this 
lesson. If you start at the positive terminal of E1 and move 
through the circuit counterclockwise, you should get: 

 +E1 (since you go through E1 in the same direction it pushes 
electron current) 

 -IR3 (since you traverse R3 in the direction of electron current) 

 -IR2 (since you traverse R2 in the direction of electron current) 

 -E2 (since you go through E2 against the direction it is pushing 
electron current) 

 -IR1 (Since you traverse R1 in the direction of electron current). 

 

 When you set this equal to zero, the loop equation for this 
circuit, considering electron current, is: 

E1 - IR3 - IR2 - E2 - IR1 = 0 

 To write a loop equation for conventional current, traverse the 
loop again and write down the voltages according to your rules. 
Assume the same direction for current as before. If you start at 
the same point (the positive terminal of E1) and mover through 
the circuit counterclockwise, you should get: 

 -E1 (since you go through E1 against  the direction it pushes 
conventional current) 

 -IR3 (since you traverse R3 in the assumed direction for 
conventional current) 

 -IR2 (since you traverse R2 in the assumed direction for 
conventional current) 
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 +E2 (since you go through E2 in the same  direction it pushes 
conventional current) 

 -IR1 (Since you traverse R1 in the assumed direction for 
conventional current). 

 

 This loop equation for this circuit, considering conventional 
current, is: 

-E1 - IR3 - IR2 + E2 - IR1 = 0 
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3. Solve each of the equations from the previous example for the 
current. 

 Electron Current Equation 

 E1 - IR3 - IR2 - E2 - IR1 = 0 

                    

 First, substitute the appropriate values from the circuit into the 
equation. 

12 - 0.56 kI - 2.2 kI - 8 - 1.5 kI = 0 

 When the two source voltages are added algebraically, they 
yield 4. 

4 - 0.56 kI - 2.2 kI - 1.5 kI = 0 

 You can combine the I terms to get: 

4 - 4.26 kI = 0 

 Transpose the 4, remembering to change its sign. 

- 4.26 kI = -4 

 Divide both sides of the equation by -4.26 k. 

4.26 kI

4.26 k
   

4

4.26 k
 

I = 0.939 mA or 939 A 

 Since this answer is positive, the assumed direction for the 
electron current (counterclockwise) is correct. 

Conventional Current Equation 

-E1 - IR3 - IR2 + E2 - IR1 = 0 

 First, substitute the appropriate values from the circuit into the 
equation. 
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- 12 - 0.56 kI - 2.2 kI + 8 - 1.5 kI = 0 

 When the two source voltages are added algebraically, they 
yield -4. This, as you will see, will make a difference in your 
answer. 

- 4 - 0.56 kI - 2.2 kI - 1.5 kI = 0 

 Combine the I terms to get: 

- 4 - 4.26 kI = 0 

 Transpose the 4, remembering to change its sign. 

- 4.26 kI = 4 

 Divide both sides of the equation by -4.26 k. 

4.26 kI

4.26 k
   

4

4.26 k
 

I = -0.939 mA or -939 A 

 Since this answer is negative the assumed direction for the 
conventional current was wrong, and so you know that the 
conventional current is actually flowing clockwise. 

 You know, if you thought about this answer for a minute, it 
makes a great deal of sense. The solution to the electron current 
equation told you that the electron current was flowing 
counterclockwise. Recall that electron and conventional current 
have the same effect in a circuit; they just flow in opposite 
directions. Thus, you know that conventional current for this 
circuit must flow in the clockwise direction. 
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4. Write the loop and node equations for the following circuit 
using electron current. Then solve the equations for the branch 
currents, including their directions, and use these currents to 
find the voltage drop across each resistor. Also indicate the 
polarity of each voltage drop. 

                                                     E1=18V                   R2=20k 

                         

 First Step: Assign a direction for each current and label it 
accordingly. 

                    

 Immediately, you can see from Kirchhoff’s current law that at 
junction point A: 

I1 = I3 + I2 

 Second Step: Traverse each loop and write down all the 
voltages you encounter with their correct signs. 

 Loop 1  18 - 10 kI1 - 15 kI3 = 0  
   (counterclockwise from point B) 

 Loop 2  10 - 20kI2 + 15 kI3 = 0 
   (counterclockwise from point A) 
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 Third Step: Simplify the equations. If you substitute I3 + I2 for I1 
in the first equation, you will then have only two unknowns, 
and you will have two equations with which to find the two 
unknowns. 

18 - 10 k (I3 + I2) - 15 kI3 = 0 

10 - 20 kI2 + 15 kI3 = 0 

 In the first equation, multiply I3 and I2  by - 10k. 

18 - 10 kI3 - 10 kI2 -15 kI3 = 0 

 You can now combine the I3 terms. 

18 - 10 kI2 - 25 kI3 = 0 

 If you multiply both sides of this equation by -2, you can then 
add it to your equation for loop 2. 

(-2) (18 - 10 kI2 - 25 kI3) = (0) (-2) 

-36 + 20 kI2 + 50 kI3 = 0 

 Fourth Step: Add the equations to eliminate one of the 
unknown currents, thus enabling you to calculate the other 
current. 

-36 + 20 kI2 + 50 kI3 = 0 

10 - 20 kI2 + 15 kI3 = 0 

-26             + 65 kI3 = 0 

65 kI3 = 26 

I3 = 
26

65 k
 = 0.4 mA = 400 A 

 Since this answer is positive, you know that the assumed 
direction for I3 is correct. 

 Fifth Step: Substitute the value of I3 in one of the previous loop 
equations to find I1 or I2. 

 Loop 2          10 - 20 kI2 + 15 kI3 = 0 

10 - 20 kI2 + 15 k (0.4 mA) = 0 

 When 15 k is multiplied by 4 mA, the result is 6, which can then 
be added to the 10. 

10 - 20 kI2 + 6  = 0 
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16 - 20 kI2  = 0 

 Transpose and divide. 

- 20 kI2 = - 16 

20 kI2

20 k
   

16

20 k
 

I2 = 0.8 mA = 800 A 

 This answer is also positive, so the assumed direction for I2 is 
correct. 

 Sixth Step: Substitute I2 and I3 in the node current equation to 
find I1. 

I1 = I3 + I2 

I1 = 0.4 mA + 0.8 mA 

I1 = 1.2 mA 

 Seventh Step: Use Ohm’s law to calculate the voltage drops 
across the resistors. 

ER1 = I1 X R1 

ER1 = 1.2 mA X 10 k 

ER1 = 12 V 

 

ER2 = I2 X R2 

ER2 = 0.8 mA X 20 k 

ER2 = 16 V 

 

ER3 = I3 X R3 

ER3 = 0.4 mA X 15 k 

ER3 = 6 V 

 Recall the rule for determining the polarity of the voltage across 
a resistor, which states that electron current flows through a 
resistor from minus to plus or from the negative side to the 
positive side. Thus, the voltage drops and their polarities are as 
shown on the next page. 
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5. Write the loop and node equations for the circuit shown in 
example 4 using conventional current. Then solve the equations 
for the branch currents, including their directions. Also indicate 
the polarities of the voltage drops produced by these 
conventional currents. 

 First Step: Assign a direction for each current and label it 
accordingly. 

                         

 Then, from Kirchhoff’s current law, the node current equation 
for node A is: 

I2 = I3 + I1 

 Second Step: Traverse each loop and write down all the 
voltages you encounter with their correct signs. 

 Loop 1  18 + 15 kI3 - 10 kI1 = 0  
   (clockwise from point C) 

 Loop 2  10 - 15 kI3 - 20 kI2 = 0 
   (clockwise from point D) 

 Third Step: Simplify the equations. If you substitute I3 + I1 for I2 
in the second equation, you will have two equations with two 
unknowns. You can than easily solve the equations for the 
unknown currents. 
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10 - 15 kI3 - 20 kI2 = 0 

10 - 15 kI3 - 20 k (I3 + I1) = 0 

 Multiply I3 and I1 by - 20 k. 

10 - 15 kI3 - 20 kI3 - 20 kI1 = 0 

 You can combine the I3 terms. 

10 - 35 kI3 - 20 kI1 = 0 

 If you divide both sides of this equation by -2, you can add it to 
the equation for loop 1. 

(10 - 35 kI3 - 20 kI1) ÷ (-2) = (0) ÷ (-2) 

-5 + 17.5 kI3 + 10 kI1 = 0 

 Fourth Step: Add the equations to eliminate one of the 
unknown currents, thus enabling you to find the other current. 

  Loop 1  18 + 15 kI3 - 10 kI1 = 0  

  Loop 2  -5 + 17.5 kI3 + 10 kI1 = 0 

                                                13 + 32.5 kI3               = 0 

     32.5 kI3 = -13 

     I3 = 
13

32.5 k
 

     I3 = -0.4 mA = - 400 A 

 Since this answer is negative, you know that the assumed 
direction for I3 is wrong and that the conventional current I3 
actually flows down through R3. 

 Fifth Step: Substitute the value of I3 in one of the previous loop 
equations to find I1 or I2. 

  Loop 1  18 + 15 kI3 - 10 kI1 = 0  

     18 + 15 kI3 (-0.4 mA) - 10 kI1 = 0  

 When 15 k is multiplied by -0.4 mA, the result is -6, which can 
then be added algebraically to the 18. 

18 -6 - 10 kI1 = 0  

12 - 10 kI1 = 0  
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Transpose and divide. 

- 10 kI1 = -12 

10kI

10k
   

12

10k
 

I1 = 1.2 mA 

 This answer is positive, so you know that the assumed direction 
for I1 is correct. 

 Sixth Step: Substitute I1 and I3 in the node current equation to 
find I2: 

I2 = I3 + I1 

I2 = -0.4 mA + 1.2 mA 

I2 = 0.8 mA or 800 A 

 The answer is positive so the assumed direction for I2 is correct. 

 Seventh Step: Use Ohm’s law to find the voltage drops across 
the resistors. Since the answers for the currents have the same 
numerical value as in the previous example, the voltage drops 
will be the same as they were before, or: 

ER1  = 12 V 

ER2  = 16 V 

ER3  = 6 V 

 In determining the correct polarities of these voltage drops, 
remember two things: 

1. Conventional current flows through resistors from plus 
to minus. 

2. I3 is actually flowing down through R3. 
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Practice Problems 

Depending upon the approach you use in solving these problems 
and how you round off intermediate results, your answers may 
vary slightly from those given here. However, any differences you 
encounter should only occur in the third significant digit of your 
answer. If the first two significant digits of your answers do not 
agree with those given here, recheck your calculations.  

1. Write the node equations for the following diagrams. 

 

a. 

 

 

 

 

b. 

 

 

 

 

c. 

 

 

 

 

d. 
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Answers 

1.a. I1 + I2 = I3 

1.b. I1 = I2 + I3 

1.c. I1 + I3 = I2 

1.d. I4 + I3 = I1 + I2 

1.e. I1 = I2 + I3 + I4 + I5 

2.a. Loop 1 — Start at point A and trace the loop ccw. 

   10 -22I1 - 15 - 10I1 = 0 

 Loop 2 — Start at point B and trace the loop ccw. 

   15 -18I3 - 15I3 = 0 

2.b. Loop 1 — Start at point A and trace the loop ccw. 

   20 -27I1 - 33I3 = 0 

 Loop 2 — Start at point B and trace the loop ccw. 

   25 + 33I3 - 39I2 = 0 

2.c. Loop 1 — Start at point A and trace the loop ccw. 

   30 - 56 kI1 - 68 kI3  

 Loop 2 — Start at point B and trace the loop ccw. 

   40 - 68 kI3 - 47I2  

2.d. Loop 1 — Start at point A and trace the loop ccw. 

   80 - 1.2 kI1  = 0 

 Loop 2 — Start at point B and trace the loop ccw. 



 

Power Production Test Technician April, 2010  

Training  Page 165 

   -1.5 kI2 - .68 k (I2 + I3) + 1.2 kI1 = 0 

 Loop 3 — Start at point C and trace the loop ccw. 

   - 20 + 1.5 kI2  = 0 

2.e. Loop 1 — Start at point A and trace the loop ccw. 

   50 - 2.7 kI1 + 3.9 kI3 = 0 

 Loop 2 — Start at point B and trace the loop ccw. 

  75 - 3.3 kI2 - 3.9 kI3  = 0 
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3.a. 
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Capacitors and the  

RC Time Constant 

 

Worked Through Examples 

1. Find the time constant of a circuit containing a 10-kilohm 
resistor in series with a 0.82-microfarad capacitor. 

 To solve this problem, you must use the time constant formula 
T = RC. Substituting in the circuit values, the formula reads T = 

10 k X 0.82 F. In scientific notation the values are: T = 1.0 X 
104 X 8.2 X 10-7. 

       1.0 X 104 

 X 8.2 X 10-7 

 T = 8.2 X 10-3 seconds (s) or 8.2 milliseconds (ms) 

2. Find the time constant of this circuit: 

 

 Use the formula: T = RC. First substitute in the circuit values: R 

= 100 k, C = 20 F. 

T = 100 k, C = 20 F 

T = 1.0 X 105 X 2.0 X 10-5 

T = 2.0 seconds 
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3. How long will it take the capacitor in the following circuit to 
reach full charge? 

 

 First, use the time constant formula T = RC 

T = RC 

T = 8.2 M X 560 F 

T = 8.2 X 106 X 5.6 X 1010 

T = 4.59 X 10-3 s or 4.59 ms 

 You must remember that the RC time constant formula you just 
worked gives you one time constant (in seconds). Five time 
constraints are required for full charge. So, multiply the time 
constant by 5 to arrive at the correct answer. 

     4.59 X 10-3 

     X  5 

     22.95 X 10-3 or 2.3 X 10-2 seconds 

 The capacitor will be fully charged after 2.3 X 10-2 seconds or 23 
milliseconds. 

4. Find the voltage across the capacitor in the circuit shown below 
500 milliseconds after the switch is closed. (Use the universal 
time constant graph.) 
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 First, you should calculate the time constant of the circuit.  
T = RC 

T = RC 

T = 10 k, X 33 F 

T = 1.0 X 104 X 3.3 X 10-5 

T = 3.3 X 10-1 or 330 ms 

 Now look at the universal time constant graph. Time (horizontal 
axis) is measured in time constants. To convert this chart to 
seconds, multiply 330 milliseconds by each of the time 
divisions. For example: 

1 X 330 ms = 330 ms 

1.5 X 330 ms = 495 ms 

2 X 330 ms = 660 ms 

3 X 330 ms = 990 ms 

4 X 330 ms = 1.32 s 

5 X 330 ms = 1.65 s 

 Now these values are applied to the universal time constant 
graph. 

 

 Look at the chart and locate the 500 millisecond position on the 
horizontal axis. Now trace directly upward (following the 
dotted line) and note the point on the charging curve that is 
reached at 500 ms.  
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 Tracing to the left from that point, across the graph, you can see 
that the amplitude at the intersection point is about 0.78 or 78% 
of the full charge voltage; 0.78 X 100 V. So after 500 ms. the 
capacitor is charged to 78 volts. 

5. Find the charge in coulombs of the capacitor in problem 4, at the 
end of 500 milliseconds.  

 The formula for calculating the charge stored in a capacitor is 

Q = CE 

 where 

Q = the stored charge in coulombs 

C = the capacitance in farads 

E = the voltage between the capacitor plates 

 Substituting the values of capacitance and voltage: 

Q = 33 F X 78 V 

Q = 3.3 X 10-5 X 7.8 X 101 

Q = 2.57 X 10-3 coulombs (or 2.57 millicoulombs) 

6. Using the universal time constant graph, calculate the time 
required for the capacitor shown below to charge to 55 volts. 

 

 First, calculate the circuit’s time constant using the formula: T = 
RC 

T = RC 

T = 470 k, X 18 F 

T = 4.7 X 105 X 1.8 X 10-5 

T = 8.46 s 
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 Now, the universal time constant curve may be used as follows 
in solving this problem. First, examine the vertical axis. On this 
axis the fraction of the maximum voltage is located. The 
maximum voltage here is 120 volts: the total applied voltage. 
What fraction of 120 volts is 55 volts? Thus, 55/120 equals 0.458. 
This is the fraction of the applied voltage 55 volts represents. 
Now, locate 0.458 on the vertical axis of the universal time 
constant graph. Trace to the right horizontally (a dotted line is 
drawn in for you to follow) until you intersect the charging 
curve.  

 

 Locate that point on the curve, and then trace directly down to 
the horizontal axis. At this point you read the time elapsed: 0.6 
time constants. You know that 1 time constant is 8.46 seconds, so 
the total elapsed time is 0.6 X 8.46 or 5.08 seconds. 

7. A “strobe” flash attachment for a camera has a bulb that 
requires 0.02 coulomb of charge at 450 volts in order to flash 
properly. What is the minimum size capacitor that could be 
satisfactorily used? 

 Since both the quantity of charge (Q) and voltage (E) are known, 
the equation C = Q/E can be used to solve this problem. Simply 
substitute in the capacitor values and solve for C. 

C = Q/E 

C = 
0.02 C

450 V
 

(coulomb)
 

C = 0.0000444 F or 44.4 F 
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8. Find the approximate frequency of oscillation in the circuit 
shown here. 

 

 The circuit shown above is a “relaxation oscillator.” It operates 
on the basis of its RC time constant. The bulb shown connected 
across the capacitor is an NE-2 neon glow lamp. These lamps 
require a certain voltage (called the “firing voltage”) in order to 
light. Once lit, the voltage across the lamp must fall significantly 
below the firing voltage before it will turn “off.” Typical “on” 
and “off” voltages for neon glow lamps are: 75 volts “on” and 
50 volts “off.” This means that the typical NE-2 will not “light” 
until the voltage across it reaches 75 volts, but once lit, will 
continue to glow until the voltage drops below 50 volts. Before 
the lamp lights, it has a very high resistance (essentially an open 
circuit). Once the lamp is on, its resistance drops to a low value. 

 Consider what will happen when one of these lamps is 
connected across a capacitor as shown in the circuit above. 
When power is applied to the circuit, the capacitor will begin to 
charge up to the source voltage. The rate of charging will be 
controlled by the RC time constant. When the capacitor reaches 
75 volts, the neon bulb (which is connected in parallel with the 
capacitor) will also have 75 volts applied across it. At this 
instant, the bulb will light, allowing heavy current flow, and 
thus discharging the capacitor very quickly. As the capacitor 
discharges, its voltage will drop down below the 50 volts 
required to keep the neon bulb lit. The bulb goes out and the 
capacitor again charges up to the 75 volts required to fire the 
bulb, and the cycle is repeated again and again. As you can see, 
there are several factors that affect the rate of blinking (or 
oscillation) of the bulb: the resistor size, the size of the capacitor, 
the supply voltage, and the characteristics of the individual 
neon bulb. 
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 To analyze this problem, first calculate the RC time constant of 
the circuit and plot it on a universal time constant graph. 

T = RC 

T = 7.5 M, X 10.2 F 

T = 7.5 X 106 X 2.0 X 10-7 

T = 1.5 s 

 

1 X 1.5 s = 1.5 s 
1.5 X 1.5 s = 2.25 s 

2 X 1.5 s = 3.0 s 
3 X 1.5 s = 4.5 s 
4 X 1.5 s = 6.0 s 
5 X 1.5 s = 7.5 s 

 

 To give a clearer picture of the operation of this circuit, these 
values are plotted on the horizontal axis of the universal time 
constant graph above. 

 The lamp fires at 75 volts, and causes the voltage across the 
capacitor to rapidly drop to 50 volts so that the lamp then goes 
out. Voltage across the capacitor, plotted as time goes on, will 
appear as shown on the next page. 
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 In order to find the time duration between flashes, simply look 
back at the Universal Time Constant graph you just filled in. 
Locate 75 volts and 50 volts, and measure the time elapsed 
between these two points. Seventy-five volts occurs at 
approximately 1.4 time constants or 2.1 seconds. Fifty volts 
occurs at 0.7 time constants or 1.055 seconds. The time elapsed 
is the difference between the two times. Subtract and you get 2.1 
s - 1.05 s = 1.05 s. So the lamp will blink once every 1.05 seconds. 
Dividing 60 by 1.05 yields a frequency of 57 flashes per minute. 

9. Calculate the total capacitance of this circuit. 

 

 Problems of the type shown above give many students 
headaches because capacitors “add” just the opposite of the way 
resistors do. Parallel capacitors are added by using a formula 
similar to the series resistance formula: CT = C1 + C2 + C3 ... 
Series capacitors must be added by using a formula similar to 
the parallel resistance formula: 

CT = 
1

1/C1    1/C2    1C3 .. .

 

 To solve this problem, the 4-microfarad and the 6-microfarad 
capacitors should be combined by using the parallel capacitance 
formula: CT = C1 + C2 + C3 ... 

CT = 4 F + 6 F 

CT = 10 F 
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 The 10 microfarads of capacitance must be combined with the 8 
microfarads of capacitance by using the series capacitance 
formula. 

 CT = 
1

1/C1    1/C2    1C3 .. .

 

CT = 
1

1/10   1/8
 

CT = 
1

0.1   0.125
 

CT = 
1

0.225
 

CT = 4.44 F 

10. Calculate the total capacitance of the following circuit. 

 

 First, find the total capacitance of the upper circuit branch using 
the series capacitance formula: 

CT = 
1

1/C1    1/C2    1C3 .. .

 

CT = 
1

1/ 4   1/ 8
 

CT = 
1

0.25   0.125
 

CT = 
1

0.375
 

CT = 2.67 F 
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 Now the total capacitance may be found by combining the two 
parallel capacitances using the parallel capacitance formula CT = 
C1 + C2 + C3 ... 

CT = 2.67 F + 6 F 

CT = 8.67 F 
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Practice Problems 

Depending upon the approach you use in solving these problems 
and how you round off intermediate results, your answers may 
vary slightly from those given here. However, any differences you 
may encounter should only occur in the third significant digit of 
your answer. If the first two significant digits of your answers do 
not agree with those given here, recheck your calculations. 
Answers are on page 336. 
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d. 

 

 

 

 

e. 

 

 

4. 
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Answers 

1.a. T = 7.05s 

1.b. T = 165 ms 

1.c. T = 4.73 ms 

1.d. 560 s 

1.e. T = 5.6 s 

 

2.a. CT = 1 F 

2.b.  CT = 1.33 F 

2.c.  CT = 5 F 

2.d.  CT = 0.75 F 

2.e.  CT = 10 F 

 

3.a. Q = 900 C 

3.b.  Q = 3.6 mC 

3.c. C = 390 F 

3.d. E = 1.33 V 

3.e. Q = 72 C 

 

4.a. T = 2.2s 

4.b. 11 s 

4.c. 39.5 V 

4.d. 75.8 V 

4.e. 1.03 s 
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Inductors and the  

L/R Time Constant 

 

Worked Through Problems 

1. Describe the magnetic field around a simple coil of the type 
shown in the figure below. What is the key effect of a coil’s 
magnetic field on the behavior of coils in dc circuits? 

 
 Solution: A magnetic field surrounds any wire carrying current. 

When this wire is wound into a coil, the magnetic field is 
concentrated inside the coil as shown by the magnetic lines of 
force drawn in the figure. This concentrated magnetic field is in 
effect an energy storage reservoir. Energy is stored when 
current attempts to increase through the coil, and this energy is 
released back into the circuit when current attempts to decrease 
through the coil. For this reason, coils are said to oppose changes 
in current in circuits. 
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2. Find the following values for the circuit shown below. 

a. Time constant 

b. Maximum steady-state current 

c. Voltage across the resistor after two time constants 

       
 The time constant for this circuit may be found by using the 

inductive time constant formula, T = L/R. In this circuit, L is 
equal to 5 henries and R is equal to 820 ohms. 5/820 = 0.0061 
second, or 6.1 milliseconds. This is one time constant for this 
circuit. Five time constants are required for the circuit to reach 
its steady-state condition. The maximum steady-state current in 
an inductive circuit is determined by using Ohm’s law. The total 
voltage, E (here 25 volts), must be divided by the total circuit 
resistance RT to give you the steady-state current. In this circuit, 
the total resistance is taken to be 820 ohms, the value of the 
resistor performing the calculation: 25 V/820  = 30.5 mA. This 
value of current will be flowing in the circuit after five time 
constants.  

 The value of current flowing after only two time constants may 
be found by using the universal time constant graph. First, 
locate the two time constant mark on the horizontal line. Trace 
the graph line up until it intersects the “current buildup” curve. 
The intersection point is labeled 86%. This means that at this 
point, the circuit current is at 86% of the steady-state value. So, 
the current value at 2 time constants may be found by 
multiplying 0.86 X 30.5 mA. The current flowing after two time 
constants is equal to 26.2 mA. The value of the current at any 
time constant point may be determined by using the universal 
time constant graph in the manner just presented. To find the 
voltage across the resistor at the end of two time constants, 
multiply the current at that point (26.2 milliamps), times the 
resistance (820 ohms), to get your answer (21.5 volts). 
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3. Find the following values for the circuit shown below: 

a. Time constant 

b. Maximum steady-state current 

c. Voltage across the resistor after 2 milliseconds (2 ms). 

 
Solution: 

a. T = L/R 

 T = 12/2700 

 T = 4.44 ms 

b. ET/RT = IT 

 5/2700 = 1.85 mA = steady-state current 

c. To find the circuit current at 2 milliseconds, the first thing to do 
is locate 2 milliseconds on the horizontal axis of the time 
constant graph. This axis of the graph is measured out in terms 
of time constants. You must get the chart to read out in seconds. 
This may be done by dividing 2 milliseconds by 4.44 
milliseconds, to determine the exact percentage 2 milliseconds is 
as compared to 4.44 milliseconds. Two ms.4.44 ms = 0.45. In 
terms of time constants, 2 milliseconds is equal to 0.45 (0r 45%) 
of one time constant. Locate 0.45 on the horizontal axis of the 
graph. Trace upward until that graph line intersects the current 
buildup curve. The intersection occurs at approximately 37%. 
This indicates that the current flowing at this point is 37% of the 
steady-state current, or 0.37 X 1.85 mA which is equal to 0.68 
mA. To find the voltage across the resistor, multiply this current 
(0.68 milliamps) times the resistance (2700 ohms) to yield the 
voltage (1.84 volts). 
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Practice Problems 

Solve the following problems related to inductance and the L/R 
time constant, using the time constant formula and the universal 
time constant graph given below.  

Depending upon the approach you use in solving these problems 
and how you round off intermediate results, your answers may 
vary slightly from those given here. However, any differences you 
encounter should only occur in the third significant digit of your 
answer. If the first two significant digits of your answers do not 
agree with those given here, recheck your calculations. 
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Answers 

1. Circuit time constant = 167 nanoseconds 

 Imax = 66.7 microamps 

 Voltage across the 150-kilohm resistor 

 after two time constants = 8.6 volts 

2. Circuit time constant = 107 milliseconds 

 Imax = 33.3 milliamps 

 Voltage across the 150-ohm resistor 

 after 50 milliseconds = 1.86 volts 

3. Circuit time constant = 500 microseconds 

 Imax = 24 milliamps 

 Voltage across the 500-ohm resistor 

 after 1 milliseconds = 10.3 volts 

4. Circuit time constant = 25 microseconds 

 Imax = 1 milliamp 

 Voltage across the 100-kilohm resistor 

 after three time constants = 95 volts 

5. Circuit time constant = 13.3 microseconds 

 Imax = 26.7 milliamps 

 Voltage across the 750-ohm resistor 

 after 25 microseconds = 17 volts 
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Inductance and Transformers 
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Transformers 

 

Basic Construction 

 
 A device in which the property of mutual inductance is put to 
practical use is the transformer. A typical transformer is shown in 
Figure 1. A typical standard transformer consists of two separate 
coils, wound on a common iron core as shown in the schematic of 
Figure 2 and considered to have a coefficient of coupling of one. 
One coil is called the primary; the other is called the secondary. As 
a result of mutual inductance, a changing voltage across the 
primary will induce a changing voltage in the secondary. Thus, if 
the primary winding is connected to an ac source and the 
secondary to a load resistor, the transformer is able to transfer 
power from the primary to the secondary to the load resistance as 
illustrated in Figure 3. By having more or fewer turns in the 
secondary as compared to the primary, the primary voltage may be 
either stepped-up or stepped-down to provide the necessary 
operation voltage for the load. 

        
                Figure 1                                               Figure 2 
   A Typical Transformer        Schematic Drawing of a Transformer 
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Figure 3 

 

Turns Ratio versus Voltage 

Recall that if a coil has a larger number of turns, a larger voltage is 
induced across the coil. With a smaller number of turns the voltage 
is less. Therefore it is easy to see that by having more or fewer turns 
in the secondary as compared to the primary, as shown in Figures 4 
and 5, the voltage may either be stepped up or stepped down to 
provide the necessary operating voltage for the load. 

   

 Figure 4 Figure 5 
 Step-up Transformer Step-down Transformer 

The ratio of the number of turns in a transformer secondary 
winding to the number of turns in its primary winding is called the 
turns ratio of a transformer. The equation for turns ratio is: 

turns ratio 
NS

NP

     (8-14) 
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Figure 6 
Transformer Used to Calculate Turns Ratio 

In the transformer schematic shown in Figure 6, the number of 
turns in its primary is 10 and the number of secondary turns is 5. 
Using equation 8-14, the turns ratio of the transformer can be 
calculated. 

turns ratio 


N S

N P


5

10


1

2

 

Transformers have a unity coefficient of coupling. Therefore, the 
voltage induced in each turn of the secondary winding (Eis) is the 
same as the voltage self-induced (EiP) in each turn of the primary, 
as shown in Figure 7. The voltage self-induced in each turn of the 
primary equals the voltage applied to the primary divided by the 
number of turns in the primary. This can be written: 

 

Figure 7 
Transformer Voltage Induction 

EiP = 
E P

N P
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Figure 8 
Example Transformer Used to Calculate 
Self-Induced Voltage in Primary Turns 

Figure 8 shows a schematic of a transformer in which there are 8 
turns in the primary and 8 volts ac is applied to it. Using equation 
8-15, the voltage self-induced in each primary turn can be 
calculated. 

E i P


E P

N P


8

8

 IV

 

In this example, one volt is induced in each turn of the primary. 

If each turn of the secondary has the same voltage induced in it, 
then the secondary voltage is equal to the number of secondary 
turns times the induced voltage. This can be written 

E S NS

EP

NP









  (8-16) 

Or rearranging,  

E S E P

NS

NP









   (8-17) 
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The transformer shown in Figure 8 has 4 turns in its secondary. 
Using equation 8-16, the secondary voltage can be calculated. 

E S NS

EP

NP









 

    = 4 
8

8









 

  = 4V  
 

The transformer's secondary voltage is 4 volts—4 turns times 1 volt 
per turn. 

 

Figure 9 
Example for Calculating Turns Ration and ES 

In another example, shown in Figure 9, there are 1000 turns in the 
primary winding of the transformer and there are 10,000 turns in its 
secondary winding. Thus, the turns ratio is  

 

turns ratio 
NS

NP

 

          


10,000

1,000


10

1

 10
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Therefore, the secondary voltage would always be 10 times greater 
than the primary voltage. If the primary voltage is 10 volts ac, then 
the secondary voltage will be 

      

E S  10EP

10(10V)

100V

 

 

Figure 10 
Example for Calculating Transformer IS 

Transformer secondary current is a function of secondary voltage 
and load resistance. If a 1 kilohm load is placed across the 
secondary as shown in Figure 10, then the secondary current, by 
Ohm’s law, will be  

IS  
ES

RL

 
100V

1k

  0.1A

 100mA

 

The secondary current is 100 mA. The transformer secondary acts 
as an ac voltage source to the load. 
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Figure 11 
Relationship of Transformer  

Primary and Secondary Windings 

Primary-to-Secondary Current Relationship 

Modern transformers, with coefficient of coupling considered to be 
one, and with no real power consumed in the windings or the core 
can be considered to have no loss, as shown in Figure 11. Therefore, 
the power in the primary is considered to be the same as the power 
in the secondary, PP = PS. Since P = EI,  

PP = PS 

EP IP = ES IS 
 Rewriting this, 

I P

IS


E S

E P

    (8-18) 

 
Note that the current relationship is the inverse of the voltage 
relationship. Thus, if the voltage is stepped up in a transformer by a 
factor of 10, the current must have been stepped down the same 
factor. This may be stated another way using equations 8-17 and 8-
18. 

Since    
I P

IS


ES

EP


NS

NS

 

Then    
I P

IS


NS

NP

 

Or    I P 
N S

N P




  




 IS

 

 



 

Power Production Test Technician April, 2010  

Training  Page 184 

Thus, in the example shown in Figure 10, if EP is 10 volts, ES is 100 
volts, and if IS, the secondary current, is 100 milliamperes, the 
primary current, IP, is calculated as: 

  

I P

IS


N S

N P









  IS

     
100

10









 100mA

      (10)  100mA

     1000mA

     1A

 

The primary current in the transformer is one ampere. 

Performing the following calculations it can be determined that 
both the primary and secondary power are equal; both are 10 watts. 

   

PP  E P IP

      (10V) (1A)

      10W

PS  E S IS

      (100v) (100mA)

      10,000mW

      10W

 

The transformer, then, either steps up or steps down the voltage 
and current, but conserves power from the primary to the 
secondary. 

However, transformers do not affect the frequency of the ac voltage 
they act upon. If the frequency of the primary voltage and current 
is 60 hertz, then the secondary voltage and current will have a 60 
hertz frequency. 

Recall that a transformer will not operate with a dc voltage. That is 
because dc voltage is non-changing and cannot produce an 
expanding or collapsing magnetic field to cut the secondary 
windings to produce a secondary voltage. 
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Variable-output Transformers 

 

Figure 12 
Variable-Output Autotransformer 

Some manufactures produce a type of autotransformer that has a 
variable output voltage. As shown in Figure 12, this is 
accomplished by making the secondary tap a wiper-type of contact 
(much like a wire-wound variable resistor). By varying the position 
of the wiper contact, various output voltages are obtainable. Of 
course, the same effect could also be produced using a variable tap 
on the secondary of a two-winding transformer as shown in Figure 
13. 

 

Figure 13 
Variable-Output Transformer 

Multiple-secondary Transformers 

Transformers are also produced which have multiple-secondary 
and center-tapped secondary windings in order to provide for 
circuits requiring several different voltage levels. A schematic for a 
typical multiple-secondary transformer is shown in Figure 14. 
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Figure 14 
Multiple-Secondary Power Transformer 

Transformer Lead Color Code 

Transformer leads are usually color coded using a standardized 
EIA wire color coding technique. A chart showing the standard EIA 
color code is provided in the appendix. Not all manufacturers use 
this particular color code so there will be some variation. 

Transformer Specifications 

Manufacturers provide specifications for transformers. The 
specifications enable a user to select a transformer that best meets 
the requirement of the application. Transformer specifications 
usually include primary voltage and frequency, secondary 
voltage(s), impedance, dc winding resistance, and current 
capabilities. For example, the power transformer of Figure 14 has 
the following specifications: 

Primary voltage: 117V, 60 Hz 

High-voltage secondary: 240V-0-240V (center-tapped) 150 mA 

Low-voltage secondary: 6.3V, 2A 

Low-voltage secondary: 5V, 3A 
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Figure 15 
Typical Power, Audio, and 

Filament Transformers 

Power transformers are multiple secondary winding transformers 
with both high and low voltage secondaries. Typical power, audio, 
and filament transformers are shown in Figure 15. Power 
transformers originally were developed for use with vacuum tube 
circuits in which high voltage for power supply levels and low 
voltage for vacuum tube filaments (heaters) were needed. The 
primary ratings specify the voltage and frequency at which the 
transformer is designed to be operated. The secondary ratings 
specify the voltages available from the various secondary windings 
as well as the maximum current which the secondaries can supply. 

Audio transformers are designed for input/output audio 
applications and are rated according to their primary and 
secondary impedances, power capabilities (wattage), and turns 
ratio. They have only a single secondary winding. 

Filament transformers are single secondary low voltage, high 
current (several amperes, typically) transformers rated according to 
their primary voltage and frequency, secondary output voltage and 
maximum output current capabilities. 
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Inductive Reactance 

 

Now that inductance, self- inductance, and transformer action have 
been discussed, the next step is a discussion of the effect of an 
inductor in an ac circuit. 

Inductance is measured and inductors are rated in henrys. An 
inductor’s effect in a circuit depends on the inductance and is 
expressed in a quantity called inductive reactance. Inductive 
reactance is a quantity that represents the opposition that a given 
inductance presents to an ac current in a circuit, such as is shown in 
Figure 16. 

 

Figure 16 
Simple Inductive Circuit 

Like capacitive reactance, it is measured in ohms and depends 
upon the frequency of the applied ac voltage and the value of the 
inductor. Inductive reactance can be expressed as follows: 

X L  2fL    (8-21) 

Where 

X L  inductive reactance (ohms)

2 =  6.28

  f = frequency(Hz) 

 L inductance(H)
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The constant of 2 comes from the number of radians in one cycle 
of a sinusoidal ac waveform. Because of this, this equation is valid 
only for calculating the inductive reactance of an inductor with 
sinusoidal alternating current applied. 

 

Figure 17 
Example Circuit for Calculating 

Inductive Reactance 

Figure 17 shows a simple inductive circuit. The inductor’s value is 
10 millinery. Applied frequency is 5 kilohertz. Using equation 8-21, 
inductive reactance, XL, is calculated:  

 

XL  2fL

       =  (6.28)(5 x 10
3
Hz)(10 x 10

3
H)

       =  314

 

Note from equation 8-21 that if either the frequency or the 
inductance is increased the inductive reactance increases. Figure 18 
shows graphically how a change in either the frequency or 
inductance changes the inductive reactance, XL. Note that the 
inductive reactance increases linearly with frequency and 
inductance. As the frequency or inductance increases, the 
inductor’s opposition to the flow of current increases. 
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Figure 18 
Frequency and Inductance 

Versus Inductive Reactance 

These plots of inductive reactance versus frequency and inductive 
reactance versus inductance shown in Figures 19 and 20 will be 
examined more closely to help you understand these relationships 
more clearly. 

  

 Figure 19 Figure 20 
 Inductive Reactance Versus Inductive Reactance Versus 
 Frequency for an  Inductance at a 
 Inductance of 10 mH Frequency of 159 Hz 

Figure 19 shows the inductive reactance versus frequency for an 
inductance of 10 millihenrys. It can be seen that as frequency 
increases so does the inductive reactance. For example, at a 
frequency of 159 hertz, the inductive reactance is 10 ohms. 
However, at a frequency of 1590 hertz the inductive reactance is 
now 100 ohms. Inductive reactance is directly proportional to 
frequency. 

In Figure 20, which plots inductive reactance versus inductance at a 
frequency of 159 hertz, it can be seen that as inductance increases so 
does the inductive reactance. For example, with an inductance of 
0.01 henrys (10 millihenrys), inductive reactance is 10 ohms. 
However, if the inductance is increased to 1 henry, the inductive 
reactance is now 1 kilohm. Inductive reactance also is directly 
proportional to inductance. 

The basic equation for inductive reactance may be rewritten in two 
other forms: 
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 f 
XL

2L
       (8-22) 
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Or 

 L 
XL

2f
       (8-23) 

Equation 8-22 can be used to determine the frequency at which an 
inductance will produce a certain reactance. Equation 8-23 can be 
used to determine the inductance that will have a certain reactance 
at a certain frequency. For example, equation 8-22 can be used to 
determine the frequency at which an 8.5 henry inductor will have 
an inductive reactance of 5 kilohms. 

  

f 
X L

2L

 
5000

(628)(8.5H)

  93.7Hz

 

Equation 8-23 can be used to determine the value of inductance 
needed to produce an inductive reactance of 10 kilohms at a 
frequency of 300 kilohertz. 

f 
X L

2f

 
10x10

3


(6.28)(300 x10
3
Hz)

  0.531 x 102 H

 = 5.31mH
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Power Calculations for Parallel-Inductive Circuit 

Similar calculations can be performed to obtain the reactive power 
for the parallel inductive circuit. Recall in that circuit IL1 = 15.9 
milliamperes and IL2 = 31.8 milliamperes. Remember the voltage 
across each branch is the applied voltage. The reactive power of L1 

is: 

PXT  E L1  I L1

       (40V) (15.9mA)

       636mVAR

 

The reactive power of L2 is: 

 

PL2  EL2  I L2

       (40V) (31.8mA)

       1272mVAR

 

The total reactive power is: 

PXT  PL1  PL2

       636mVAR +  1272mVAR

       1908mVAR

 

Also, the total reactive power in a parallel circuit equals the total 
applied voltage times the total current. 

PXT  E A  I T

       (40V) (47.7mA)

       1908mVAR

 

 

Figure 21 
Example Series Inductive Circuit 
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Summary 

This lesson has been an introduction to the inductor, how it is 
structured, its schematic symbol, its typical units of inductance, and 
how it functions in typical circuits. The phase relationship of the 
voltage and current in an inductive circuit were discussed. Mutual 
inductance and how it is put to use in transformers, and how to 
make voltage and current calculations for transformer circuits were 
also discussed. Services and parallel inductive problems were 
solved, and reactive power calculations were described. 

Worked-Out Examples 

1.  Describe the action of an inductor in a circuit. 

 

 

 Solution::  A magnetic field surrounds any wire carrying current. 
As current increases through a wire, the magnetic field expands 
through the wire inducing a counter current which opposes the 
increase in the initial current. As current decreases in a wire, the 
magnetic field collapses through the wire inducing current in 
the same direction and aiding the current which is trying to 
decrease, thus opposing the decrease of current. when the wire 
is wound into a coil, the magnetic field produced by each turn 
of wire in the coil interacts with adjacent turns increasing this 
inductive effect. This coil of wire is called an inductor. If it is 
placed in a circuit such that a changing current passes through 
it, it will oppose the change (increase or decrease) of current. 

 

2.   Define inductance. 

 

 Solution: Inductance is the property of a circuit which opposes 
any change in current. 
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3.  If the current through a 8 millihenry-coil is changing at the rate 
of 10 milliamperes every 5 seconds, determine the rate of 
change of the current in amperes per second, and the voltage 
(CEMF) induced across the coil.  

 a.  Rate of change of current
i

t


10mA

5 sec
 2mA/sec 

 

 b.   CEMF=EL 

 L
i

t









  (8mH) (2mA/sec)= (8 x 10

-3
H) (2 x 10

-3
A/sec)

               =  16 x 10
-6

V =  16V

 

 

 

4.  If two coils are connected in series as shown, determine their 
total inductance with no mutual inductance, and their mutual 
inductance and total inductance considering mutual inductance 
(aiding and opposing) if k=0.4. 

 

Solution:: 

 a.  LT (no LM) = L1 + L2 = 18H + 2H = 20H 

 b.  LT (aid) = L1 + L2 + 2LM = 18H + 2H + 2(2.4H) 

                    = 18H + 2H + 4.8H = 24.8H 

              where  
L M   k L1 x L2   0.4 18H x 2H 

        0.4 36H  0.4 (6)H  2.4H
 

c.  LT (oppose) = L1 + L2 - 2LM = 18H + 2H - 2(2.4H)  

    LT (oppose) = 20H - 4.8H = 15.2H 
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5.  

a.  Given the circuit shown solve for the total inductance of the 
parallel-connected inductors if there is no mutual inductance. 

 

Solution:: 

  
L T =

L1  x L 2

L1  x L 2


(10mH) (40mH)

10mH   40mH


400

50









mH

L T  8mH

 

b.  Determine their mutual inductance and total inductance (aiding 
and opposing) if mutual inductance exists with a coefficient of 
0.2. 

Solution: 

L M   k L1  x L 2   0.2 10mH x 40mH  0.2  400mh  0.2(20)mH

L M   4mH
 

L T (aid)   
(L1  L M ) (L 2  L M )

L1  L 2   2LM


(10mH  4mH)  (40mH)

10mH  40mH  2(4mH)


(14mH) (44mH)

(58mH)

L T (aid)   10.62mH

L T (oppose)  
(L1  L M ) (L 2 LM )

L1  L 2  2LM


(10mH 4mH)  (40mH- 4mH)

10mH 40mH 2(4mH)
 5.14mH

 

6.  If the primary voltage applied to a transformer is 120 VAC and 
the secondary voltage output is 480 VAC, determine the turns 
ratio for the transformer and state whether it is a step-up or 
step-down transformer. 

Solution: 

a.  Turns ratio 
NS

N P


ES

E P


480V

120V


4

1
 

 or written in NS:NP form, 4:1 

b.  This is a step-up transformer since the secondary 
voltage is higher than the primary voltage. 
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7.  Given the transformer with turns-ratio and load-resistance 
specified, determine the following values: Esec, Isec, Ipri, Ppri and 
Psec. (Assume 100 percent efficiency.) 

 

Solution: 

E sec  
N S

N P









E pri 

1

10









  150V 15V (This  is  also 50 hertz.

I sec  
E sec

R L


15V

2.7k
 5.56mA

I pri =
N S

N P









 I sec  =

1

10









 5.56mA = 0.556mA

Ppri = Epri  x I pri = (150V) (0.556mA) = 83.4mW

Psec = E sec  x I sec = (15V) (0.56mA) = 83.4mW

Note that Ppri = Psec !

 

 

8.  If the primary voltage is 120 VAC with a primary current of 10 
mA and the secondary voltage is 12.6 VAC with a secondary 
current of 85 millamperes, determine the percent efficiency of 
this transformer. Explain the loss of power between primary 
and secondary. 

Solution: 

a. Ppri  Eprix I pri
 (120V) (10mA)  120mW 

 Psec  Esec x I sec  (12.6V) (85mA) 1071mW  

 % Eff 
P

S

PP

x 100%
1071mW

1200mW









 x 100% 0.893 x 100% 89.3% 

 

b.  The power loss (10.7 percent of the primary power) Between 
primary and secondary is due to eddy currents, hysteresis and 
winding resistance heat loss. 
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9.  Calculate the inductive reactance of the inductors at these 
specified frequencies: 

a. 10 millihenry coil operated at a frequency of 5 
kilohertz: 

Solution: 

 X L  2fL = (6.28) (5kHz)= (6.28) (5 x103 Hz) (10 x10-3 H)

      = 314 x 10 = 314
 

 

b.  An 8.5 henry coil operated at a frequency of 60 hertz: 

Solution: 

 X L  2fL = (6.28) (60Hz) (8.5H)= 3202.8 = 3.2k  

 

c.  A 45 microhenry coil operated at a frequency of 1250 
kilohertz: 

Solution: 

X L  2pfL = (6.28) (1250kHz) (45H) = (6.28) (1250 x 103 Hz) (45 x 10-6 H)

     = 353250 x10
-3
 = 353.25

  

10.  Calculate the value of the inductor needed to produce the 
reactance specified at the given  frequency: 

  

a.  A reactance of 1megohm at a frequency of 40 kilohertz: 

Solution: 

 L 
XL

2pf


1M

(628) (2240kHz)


1 x 10
6


(6.28) (40 x 10
3
Hz)

 3.9H 

 

b.  A reactance of 47 kilohms at a frequency of 108 
megahertz: 

Solution: 

 L 
XL

2f


47k

(6.28) (1080MHz)


1 x 10
6


(6.28) (108 x 10
6
Hz)

 3.9H 

    0.0693 x 10
3

H   0.0693mH  69.3H 
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11.  Calculate the frequency at which the given inductors will 
have the specified reactance. 

a.  A reactance of 50 kilohms with a 4 millihenry inductor: 

Solution: 

 
f 

X L

2f


50k

(6.28) (4mHz)


50 x 103

(6.28) (5 x 103 H)


50  x  103

25.12 x  103

  =  2 x 10
6
Hz = 2MHz

 

  

b.  A reactance of 25 ohms with a 5 millihenry inductor: 

Solution: 

 f 
X L

2f


25k

(6.28) (5mHz)


25

(6.28) (5 x 10
3

H)


25

0.0314
 796Hz 

 

12.  Solve for the values indicated using the circuit shown. 
(Assume LM = 0.) 

  

a.  LT  = __________ f.  EL1   =  __________ 

b.  XL1  =  __________ g.  EL2   =  __________ 

c.  XL2  =  __________ h.  PLI   =  __________ 

d. XLT   =  __________ i.  PL2  =  __________ 

e.  IT   =  __________ j.  PLT   =  __________ 
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Solution: 

 a. L T    L1   L2   15mH  85mH   100mH  

 b. X L1   2fL 1   (6.28) (25kHz) (15mH) = 2355 =  2.36k 

 c. X L2    2fL 2    (6.28) (25kHz) (85mH) = 1345 =  1.35k  

 d. X LT    XL1 +  XL2   2.36k   13.35k    15.7k  or 

   X LT    2fL T   (6.28) (25kHz) (100mH) = 1345 =  15.7k  

 e. IT   
EA

XLT


16V

15.7k
1.02mA  

 f. E L1   ILIX LI  ITX LI    (1.02mA) (2.36k) = 2.4V 

 g. E L2    IL2 XL2  ITX L2    (1.02mA) (13.35k) = 13.6V 

 h. PL1   EL1IL1  EL1IT    (2.4V) (1.02mA) = 2.45VAR 

 i. PL2   EL2 IL2  EL2IT    (13.6) (1.02mA) = 13.87mVAR  

 j. PLt    PL1PL2  2.45mVAr    13.87mVAR = 16.32mVAR or 

   PLT   EAIT  (16V) (1.02mA) = 16.32mVAR  

 

13.  Solve for the values indicated using the circuit shown. 
(Assume LM = 0.) 

  

a.  LT  = __________ f.  IL2  = __________ 

b.  XL1 =  __________ g.  IT  = __________ 

c.  XL2  = __________ h.  PLI  = __________ 

d.  XLT  = __________ i.  PL2  = __________ 

e.  IL1  = __________ j.  PLT  = __________ 
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Solution: 

a.  L T  
L1

L1  L2


(1.8mH) (8.6mH)

(1.8mH +  8.6mH)


15.48

10.4









 mH =  1.49mH  

b.  X L1   2fL 1   (6.28) (150kHz) (1.8mH) = 1695.6 =  1.7k  

c.  X L2    2fL 2    (6.28) (150kHz) (8.6mH) = 8101.2 =  8.1k  

d.  XL2    
(XLI ) (XL2 )

XLI    XL2


(1.7k) (8.1k)

(1.7k) + (8.1k)

13.77

9.8






k  1.4k or  

 X LT    2fL T   (6.28) (150kHz) (1.49mH) = 1403.6 =  1.4k  

e.  IL1   
EA

X L1


50V

1.7k
 29.4mA  

f.  IL2   
EA

XL2


50V

8.11k
 6.2mA  

g.  IT    IL1 + IL2  20.4mA+ 6.2mA) = 35.6mA  

h.  PL1   EL1IL1  EAIL1    (50V) (29.4mA) = 1470mVAR  

i.  PL2   EL2 IL2  EAIL2    (50V) (6.2mA) = 310mVAR  

j.  PLT   EAIT  (50V) (35.6mA)  1780mVAR or 

 PLT   PLI + PL2 1470mVAR + 310mVAR=1780mVAR 
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Practice Problems 

1.  State a short definition of inductance. 

2.  The concepts of two men are used to explain CEMF for 
inductors. Who are they? 

3. If an iron core is extracted from a coil, will the coil’s inductance 
increase or decrease? Why? 

4.  As the number of turns of wire used in a coil increases, does the 
value of its inductance increase or decrease? 

5.  If two coils are placed in proximity of one another and one coil 
produces 4000 lines of flux, 3500 of which cut the second coil, 
what is the coefficient of coupling of these two coils? k= 

_______. 

6. What is the range of values for the coefficient of coupling? 
_______ to _______. (upper and lower limits for k); 

7.  In the circuit shown, two coils are connected in series. 
Determine their total inductance with no mutual inductance. 
Then determine their mutual inductance and their combined 
inductance considering mutual inductance (aiding and 
opposing). k = 0.4, L1 = 4 henrys. and L2 = 9 henrys. 

 

 

 

 

 

a.  LT(no LM) = _______. 

b.  LM = _______. 

c.  LT(aid) = _______. 

d.  LT(opp) = _______. 
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8.  In the circuit shown, determine the total inductance of the two 
parallel-connected inductors if there is no mutual inductance. 
Then determine their mutual inductance and total inductance 
(aiding and opposing) if they have a coefficient of coupling of 
0.2. 

 

a.  LT(no LM) = _______. 

b.  LT(aid) = _______. 

c.  LT(opp) = _______. 

d.  LM = _______. 

9. a.  Sketch the magnetic field about the coil in the drawing. 

 Indicate north and south poles. 

 

   b.  Sketch the magnetic field about the conductor. Show its 
direction. 

 

10.  If the current through a coil is changing at the constant rate 
of 40 milliamperes every 10 seconds, determine the rate of 
change of the current in amperes per second. If the coil is rated 
at 5 millihenrys, determine the voltage across the coil. 

a.  ROC of I = ____________ A/sec 

b.  EL = ____________. 

 

11.  What coefficient of coupling is desired for transformers? 

 k = ____________. 
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12.  If the primary voltage is greater than the secondary voltage 
of a transformer, is it known as a step-up or step-down 
transformer? 

 

13.  What two types of core losses in a transformer are associated 
directly with the core? 

 a. ____________. 

 b. ____________. 

 

14.  If EP = 120 VAC and ES = 25.2 VAC, determine the turns 
ration (NS:NP) of the transformer. 

 Turns ratio = ____________.: ____________. 

 

15.  What type of transformer does not provide electrical 
isolation of primary to secondary? 

 

16.  If the primary voltage is 240 VAC with a primary current of 
8 milliamperes and the secondary voltage is 50 VAC with a 
secondary current of 33 milliamperes, determine the percent 
efficiency of this transformer: 

 % eff = ____________. 

17.  A transformer has a turns ration (NS:NP) of 1:4.5, has 120 
VAC applied to its primary, and has a 6.8 kilohm resistor as a 
load on its secondary. Determine the secondary voltage, the 
secondary current, and primary current. (Assume 100 percent 
efficiency.) 

  a. Esec = ____________. 

  b. Isec = ____________. 

  c. Ipri = ____________. 

 

18.  When 40 VAC is applied to the primary of a transformer, a 
secondary current of 8 milliamperes flows through a one kilohm 
resistor connected across the secondary. 2 milliamperes of 
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primary current is present. Determine the percent efficiency of 
the transformer and transformer and its turns ratio. 

 a. % eff = ____________. 

 b. NS:NP = ____________. 

 

19.  Calculate XL for a 2 millihenry coil operated at frequencies of 
100 hertz, 5 kilohertz, and 1.2 megahertz. 

 a. XL (f = 100 hertz) = ____________. 

 b. XL (f = 5 kilohertz) = ____________. 

 a. XL (f = 1.2 megahertz) = ____________. 

 

20.  From Problem 19, you see that as the frequency applied to 
an inductor increases, the inductive reactance of it 
____________. (increases, decreases). 

 

21.  What is the value of an inductor needed to produce a 
reactance of 482 kilohms at a frequency of 5 kilohertz? 

 L = ____________. 

22.  What is the frequency at which an inductor of 8.5 henrys will 
have an inductive reactance of 1 kilohms? 

 f = ____________. 

23.  Solve for the indicated values using the circuit shown. 
(Assume LM = 0.) 

  

a.  X L1  = ____________. f.  EL2  = ____________.  

b.  XL1  = ____________. g.  PLI  = ____________.  

c.  XLT  = ____________. h.  PL2  = ____________.  

d.  IT  = ____________. i.  PL2  = ____________.  
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e.  EL1  = ____________.  
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24.  Solve for the values using the circuit shown. (Assume LM = 
0.) 

 

a.  L T  = ____________. f.  IT  = ____________.  

b.  XL1  = ____________. g.  ELI  = ____________.  

c.  XL2  = ____________. h.  EL2  = ____________.  

d.  IL1  = ____________. i.  IL2  = ____________.  

e.  XLT  = ____________.  
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Quiz 

1.  Inductance is the property of a circuit that 

  a. opposes any change in voltage. 

  b. opposes current. 

  c. opposes any change in current. 

  d. opposes any change in frequency. 

2.  Which of the factors listed below does not govern the value of a 
coil? 

  a. Number of turns 

  b. The type of core material used 

  c. The size (cross-sectional area) of the coil 

  d. The length of the coil 

  e. The size of the wire used in the coil 

3.  The rise or fall of current through an inductor in a circuit is said 
to be: 

  a. exponential 

  b. logarithmic 

  c. linear 

  d. none of the above 

4.  The voltage that appears across an inductor in a circuit is 
called____________.  and appears only when 
____________.the inductor. 

  a. counter emf; the current is constant through 

  b. voltage drop; the voltage changes across  

  c. counter EMF; the current increases or decreases through 

  d. voltage drop; the voltage is constant across 
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5.  The phase relationship of the voltage across an inductor and the 
current passing through it in an ac (sinusoidal) circuit is such 
that  

  a. the voltage lags the current by 90 degrees. 

  b. the current leads the voltage by 90 degrees. 

  c. the voltage leads the current by 90 degrees. 

  d. the voltage and current are in phase. 

6.  Determine the mutual inductance of two inductors having a 
coefficient of coupling of 0.8 if their values are 16 millihenrys 
and 5 millihenrys. 

   a. 64 mH 

  b. 7.2 mH 

  c. 2 0mH 

  d. 36 mH 

7.  If the two inductors are series-connected and their values are 16 
henrys and 25 henrys, determine their total inductance if they 
have no mutual inductance. 

  a. 9.76H 

  b. 6.4H 

  c. 20H 

  d. 41H 

8.  If the two inductors of Question 7 have a coefficient of coupling 
of 0.2, determine their total inductance aiding and opposing. 

  a. 41H, 49H 

  b. 49H, 33H 

  c. 49H, 41H 

  d. 41H, 8H  
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9.  If a transformer has a turns ration of 1:19 (NS:NP), an applied 
primary voltage of 120 VAC, 60 hertz, and a secondary load 
resistance of 3.3 kilohms, determine the quantities specified 
below. (Assume 100 percent efficiency.)  

  a. Esec =____________________ 

  b. Isec =_____________________ 

  c. Ipri =______________________ 

  c. Ipri = Psec __________________ 

10.  A transformer has a greater primary current than secondary 
current under load conditions. Is it a step-up or step-down 
transformer? 

11.  Using the inductive reactance equation and given the data 
specified below, solve for the unknown quantity.  

  a. L 15mH , f =  5kHz:  X L =  ____________ 

  b. X L  20k,f =  3.5MHz:  L =  ________ 

  c. X L  600k,L =  10mH :  f =  ________ 

12.  Determine the requested voltages, currents and power for 
these two circuits. (Assume LM = 0.) 

 

                           Circuit a         Circuit b 

a.  XLT  = ____________. i.  XLT  = ____________.  

b.  ELI  = ____________. j.  IL1  =  ____________.  

c.  EL2  = ____________. k.  IL2  = ____________.  

d.  IT  = ____________. l.  IT  =  ____________.  

e.  PLI  = ____________. m.  PL1  =  ____________.  

f.  PL2  = ____________. n.  PL2  =  ____________.  

g.  PLT  =  ____________. o.  PLT  =  ____________.  
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h.  LT  = ____________.  
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Practice Problems Answers (Pg 202-206) 

1.  Inductance is the property of a circuit that opposes any change 
in current. 

2.  Oersted and Faraday 

3.  Decrease. This happens because the permeability of iron is more 
than that of air and as the iron core is extracted, the 
permeability of the core is reduced; Thus, the value of the 
inductance of the coil is decreased. 

  

4.  Increase 

5.  k 
 Common

 Total


3500

4000
 0.875 

6.  0 to 1 (k = 0, no mutual inductance to k = 1, unity coupling) 

7.  a. 13H 

 b. 2.4H 

 c. 17.8H 

 d. 8.2H 

8.  a. 3.45 mH 

   b. 4.9 mH 

 c. 1.84 nG 

 d. 2 mH 

9.       
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10. a.ROCof i  4x10
3

A/sec 

 b.E L  20V  

11.  k = 1 

12.  Step-down 

13.  a. hysteresis 

 b. eddy currents 

14.  
NS

N P


ES

EP


25.2V

120V


1

4.76
 

 NS : NP   1: 4.76  

15. Autotransformer 

16. Ppri 1920 mW;Psec 1650 mW  

 % eff 
Psec

Ppri

 x  100 

          
1650mW

1920mW
  x 100 = 85.9% 

17. a. 26.67V 

 B. 3.92 mA 

 c. 0.87 mA 

18. a. 80% 

 b. 1:5 (NS:NP) 

19. a. 1.26  

 b. 62.8  

 c. 15k  

20. Increases 

21. 15.4H 

22. 18.7 Hz 
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23. a. 62.8   f. 16.7V 

 b. 314   g. 175mVAR 

 c. 376.8   h. 885mVAR 

 d. 53mA   i. 1060mVAR 

 e. 3.3V  

 

 

24. a. 1.875mH  f. 7.07A  

 b. 4.71  g. 25V   

 c. 14.13  h. 25V   

 d. 5.3A   i. 1.77A  

 e. 3.53  
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Alternating-Current Circuits 

 

This chapter shows how to analyze sine-wave ac circuits that have 
R, XL, and XC. How do we combine these three types of ohms of 
opposition, how much current flows, and what is the phase angle? 
These questions are answered for both series and parallel circuits. 

The problems are simplified by the fact that in series circuits XL is at 
90° and XC at -90°, which are opposite phase angles. Then all of one 
reactance can be canceled by part of the other reactance, resulting 
in only a single net reactance. Similarly, in parallel circuits, IL and IC 
have opposite phase angles. These currents oppose each other for 
one net reactive line current. 

Finally, the idea of how ac power and dc power can differ because 
of ac reactance is explained. Also, types of ac current meters are 
described including the wattmeter. 

Important terms in this chapter are: 

apparent power VAR unit 

power factor voltampere unit 

real power wattmeter 

More details are explained in the following sections: 

1. AC Circuits with Resistance but no Reactance 
2. Circuits with XL Alone 
3. Circuits with XC Alone 
4. Opposite Reactances Cancel 
5. Series Reactance and Resistance 
6. Parallel Reactance and Resistance 
7. Series-Parallel Reactance and Resistance 
8. Real Power 
9. AC Meters 
10. Wattmeters 
11. Summary of Types of Ohms in AC Circuits 
12. Summary of Types of Phasors in AC Circuits 
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AC Circuits with Resistance but No Reactance 

Combinations of series and parallel resistances are shown in Figure 
1. In Figure 1a and b, all voltages and currents throughout the 
resistive circuit are in the same phase as the applied voltage. There 
is no reactance to cause a lead or lag in either current or voltage. 

 
                                (a)                                                    (b) 

Figure 1 
AC Circuits with Resistance but no Reactance 

(a) Resistances R1 and R2 in series (b) Resistances R1 and R2 in Parallel 
 

Series Resistances   

For the circuit in Figure 1a, with two 50- resistances in series 
across the 100-V source, the calculations are as follows: 

RT = R1 + R 2 = 50+ 50 = 100

  I =
VT

RT


100

100
 1 A

V1  IR1  1 x 50  50 V

V2 = IR 2 = 1 x 50 = 50 V

 

Note that the series resistances R1 and R2 serve as a voltage divider, 
as in dc circuits. Each R has one-half the applied voltage for one-
half the total series resistance. 

The voltage drops V1 and V2 are both in phase with the series 
current I, which is the common reference. Also I is in phase with 
the applied voltage VT because there is no reactance. 
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Parallel Resistances   

For the circuit in Figure 1b, with two 50- resistances in parallel 
across the 100-V source, the calculations are  

I 1 =
VA

R1


100

50
 2 A

I 2 =
VA

R 2


100

50
 2 A

I T = I1 + I 2 = 2 + 2 = 4 V

 

With a total current of 4 A in the main line from the 100-V source, 
the combined parallel resistance is 25 . This RT equals 100 V/4A 
for the two 50- branches. 

Each branch current has the same phase as the applied voltage. 
Voltage VA is the reference because it is common to both branches. 

Practice Problems — Section-1 

Answers at End of Chapter 

a. In Figure 1a, what is the phase angle between VT and I? 

b. In Figure 1b, what is the phase angle between IT and 
VA? 
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Circuits with XL Alone 

The circuits with XL in Figures 2 and 3 correspond to the series and 
parallel circuits in Figure 1, with ohms of XL equal to the R values. 
Since the applied voltage is the same, the values of current 
correspond because ohms of XL are just as effective as ohms of R in 
limiting the current or producing a voltage drop. 

 

Figure 2 
Series Circuit with XL Alone 

(a) Schematic diagram  (b) Phasor diagram 

Although XL is a phasor quantity with a 90° phase angle, all the 
ohms of opposition are the same kind of reactance in this example. 
Therefore, without any R or XC, the series ohms of XL can be 
combined directly. Similarly, the parallel IL currents can be added. 

XL Values in Series   

For Figure 2a, the calculations are 

X L T
= X L 1

+ X L 2
= 50 + 50 = 100

  I =
VT

RL T


100

100
 1 A

V1 = IX L1
= 1 + 50 = 50 V

V2 = IX L 2
= 1 + 50 = 50 V

 

Note that the two series voltage drops of 50 V each add to equal the 
total applied voltage of 100 V. 
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With regard to the phase angle for the inductive reactance, the 
voltage across any XL always leads the current through it by 90°. In 
Figure 2b, “I” is the reference phasor because it is common to all 
the series components. Therefore, the voltage phasors for V1 and V2 
across either reactance, or VT across both reactances, are shown 
leading “I” by 90°. 

IL Values in Parallel   

For Figure 3a the calculations are 

I1 =
VA

XL1


100

50
 2 A

I2 =
VA

X L2


100

50
 2 A

IT = I1 + I2 = 2 + 2 = 4 A

 

 

Figure 3 
Parallel Circuit with XL Alone 

(a) Schematic Diagram   (b) Phasor Diagram 

These two branch currents can be added because they both have 
the same phase. The angle is 90° lagging the voltage reference 
phasor as shown in Figure 3b. 

Since the voltage VA is common to the branches, this voltage is 
across XL1

, and X L 2
. Therefore VA is the reference phasor for 

parallel circuits. 

Note that there is no fundamental change between Figure 2b, 
which shows each XL voltage leading its current by 90°, and Figure 
3b, showing each XL current lagging its voltage by -90°. The phase 
angle between the inductive current and voltage is still the same 
90°. 
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Practice Problems— Section-2 

a. In Figure 2, what is the phase angle of VT with respect 
to I? 

b. In Figure 3, what is the phase angle of IT with respect to 
VA? 

Circuits With XC Alone 

 

Figure 4 
Series Circuit With XC Alone 

(a) Schematic Diagram  (b) Phasor Diagram 

Again, reactances are shown in Figures 4 and 5 but with XC values 
of 50 . Since there is no R or XL, the series ohms of XC can be 
combined directly. Also the parallel IC currents can be added. 

XC Values in Series   

For Figure 4a, the calculations for V1 and V2 are the same as before. 
These two series voltage drops of 50 V each add to equal to total 
applied voltage. 

With regard to the phase angle for the capacitive reactance, the 
voltage across any XC always lags its capacitive charge and 
discharge current “I” by 90°. For the series circuit in Figure 4, “I” is 
the reference phasor. The capacitive current leads by 90°. Or, we 
can say that each voltage lags “I” by -90°. 
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IC Values in Parallel   

For Figure 5, VA is the reference phasor. The calculations for I1 and 
I2 are the same as before. However, now each of the capacitive 
branch currents or the IT leads VA by 90°. 

 

Figure 5 
Parallel Circuit With XC Alone 

(a) Schematic Diagram   (b) Phasor Diagram 

Practice Problems — Section 3 

a. In Figure 4, what is the phase angle of VT with respect 
to I? 

b. In Figure 5, what is the phase angle of IT with respect to 
VA? 

Opposite Reactances Cancel 

In a circuit with both XL and XC, the opposite phase angles enable 
one to cancel the effect of the other. For XL and XC in series, the net 
reactance is the difference between the two series reactances, 
resulting in less reactance than either one. In parallel circuits, the IL 
and IC branch currents cancel. The net line current then is the 
difference between the two branch currents, resulting in less total 
line current than either branch current. 

XL and XC in Series   

For the example in Figure 6, the series combination of a 60- XL 
and a 40- XC in Figure 6a and b is equivalent to the net reactance 
of the 20- XL shown in Figure 6c. Then, with 20  as the net 
reactance across the 120-V source, the current is 6 A. This current 
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lags the applied voltage VT by 90° because the net reactance is 
inductive. 

 

Figure 6 

When XL and XC Are in Series, Their Ohms of Reactance Cancel 

(a) Series Circuit  (b) Phasors for XL and XC With Net Resultant 

(c) Equivalent Circuit with Net Reactance of 20  of XL 
 

For the two series reactances in Figure 6a, the current is the same 
through both XL and XC. Therefore, the voltage drops can be 
calculated as 

VL or IXL = 6 A x 60  = 360 V 

VC or IXC = 6 A x 40  = 240 V 

Note that each individual reactive voltage drop can be more than 
the applied voltage. The sum of the series voltage drops still is 120 
V, however, equal to the applied voltage. This results because the 
IXL and IXC voltages are opposite. The IXL voltage leads the series 
current by 90°; the IXC voltage lags the same current by 90°. 
Therefore, IXL and IXC are 180° out of phase with each other, which 
means they are of opposite polarity and cancel. Then the total 
voltage across the two in series is 360 V minus 240 V, which equals 
the applied voltage of 120 V. 

If the values in Figure 6 were reversed, with an XC of 60  and an 
XL of 40 , the net reactance would be a 20- XC. The current 
would be 6 A again, but with a lagging phase angle of -90° for the 
capacitive voltage. The IXC voltage would then be larger at 360 V, 
with an IXL value of 240V, but the difference still equals the applied 
voltage of 120 V. 

XL and XC in Parallel   
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In Figure 7, the 60- XL and 40- XC are in parallel across the 120-V 
source. Then the 60- XL branch current IL is 2 A, and the 40- XC 
branch current IC is 3 A. The XC branch has more current because 
its reactance is less than XL. 

In terms of phase angle, IL lags the parallel voltage VA by 90°, while 
IC leads the same voltage by 90°. Therefore, the opposite reactive 
branch currents are 180° out of phase with each other and cancel. 
The net line current then is the difference between  
3 A for IC and 2 A for IL, which equals the net value of 1 A. This 
resultant current leads VA by 90° because it is capacitive current. 

If the values in Figure 7 were reversed, with an XC of 60  and an 
XL of 40 , IL would be larger. The IL then equals 3 A, with an IC of 
2 A. The net line current is 1 A again but inductive, with a net XL. 

 
Figure 7 

When XL and XC are in Parallel, Their Branch Currents Cancel 
(a) Parallel Circuit  (b) Phasors for Branch Currents IC and IL With 

Net Resultant (c) Equivalent Circuit With Net Line Current of 1 A for IC 
 

Practice Problems — Section 4 

a. In Figure 6, how much is the net XL? 

b. In Figure 7, who much is the net IC? 

Series Reactance and Resistance 

In this case, the resistive and reactive effects must be combined by 
phasors. For series circuits, the ohms of opposition are added to 
find Z. First added all the series resistances for one total R. Also 
combine all the series reactances, adding the same kind but 
subtracting opposites. The result is one net reactance, indicated X. 
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It may be either capacitive or inductive, depending on which kind 
of reactance is larger. Then the total R and net X can be added by 
phasors to find the total ohms of opposition for the entire series 
circuit. 
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Magnitude of Z   

After the total R and net reactance X are found, they can be 
combined by the formula 

Z  R
2
X

2  (24-1) 

The circuit’s total impedance Z is the phasor sum of the series 
resistance and reactance. Whether the net X is at +90° for XL or  
-90° for XC does not matter in calculating the magnitude of Z. 

An example is illustrated in Figure 8. Here the net series reactance 
in Figure 8b is a 30- XC. This value is equal to a 60- XL subtracted 
from a 90- XC as shown in Figure 8a. The net 30- XC in Figure 8b 
is in series with a 40- R. Therefore 

Z  R
2
 X

2

 (40)2  (30)2

 1600 900  2500

Z  50 

 

 
Figure 8 

Impedance Z of Series Circuit 
(a) Resistance R, XL, and XC in Series 

(b) Equivalent Circuit With One Net Reactance  (c) Phasor Diagram 
 

I = V/Z   

The current is 100 V/50  in this example. or 2 A. This value is the 
magnitude, without considering the phase angle. 
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Series Voltage Drops   

All the series components have the same 2-A current. Therefore, the 
individual drops in Figure 8a are 

VR = IR = 2 x 40 = 80 V 

VC = IXC = 2 x 90 = 180 V 

VL = IXL = 2 x 60 = 120 V 

Since IXC and IXL are voltages of opposite polarity, the net reactive 
voltage is 180 minus 120 V, which equals 60 V. The phasor sum of 
IR at 80 V and the net reactive voltage IX of 60 V equals the applied 
voltage VT of 100 V. 

Phase Angle of Z   

The phase angle of the series circuit is the angle whose tangent 
equals X/R. The angle is negative for XC but positive for XL. 

In this example, X is the net reactance of 30  for XC and R is 40 . 
Then tan  = -0.75 and  is -37°, approximately. 

The negative angle for Z indicates lagging capacitive reactance for 
the series circuit. If the values of XL and XC were reversed, the 
phase angle would by +37°, instead of -37°, because of the net XL. 
However, the magnitude of Z would still be the same. 

More Series Components   

How to combine any number of series resistances and reactances is 
illustrated by Figure 9. Here the total series R of 40  is the sum of 
30  for R1 and 10  for R2. Note that the order of connection does 
not matter, since the current is the same in all series components. 
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Figure 9 

Series AC Circuit With More Components Than Figure 9, 

But The Same Values of Z, I, and  

The total series XC is 90 , equal to the sum of 70  for X C1
 and 20 

 for X C2
. Similarly, the total series XL and 60 . This value is 

equal to me sum of 30  for XL1
 and 30  for X L 2

. 

The net reactance X equals 30 , which is 90  of XC minus 60  of 
XL. Since XC is larger than XL, the net reactance is capacitive. The 
circuit in Figure 9 is equivalent to Figure 8, therefore, since a 40- R 
is in series with a net XC of 30 . 

Practice Problems — Section 5 

a. In Figure 8, how much is the net reactance? 

b. In Figure 9, how much is the net reactance? 

Parallel Reactance and Resistance 

With parallel circuits, the branch currents for resistance and 
reactance are added by phasors. Then the total line current is found 
by the formula 

I T  I R

2
 IX

2
 (24-2) 

Calculating IT   

As an example, Figure 10a shows a circuit with three branches. 
Since the voltage across all the parallel branches is the applied 100 
V, the individual branch currents are 

I R 
VA

R


100 V

25 
 4 A

I L 
VA

XL


100 V

25 
 4 A

I C 
VA

XC


100 V

100 
 4 A
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The net reactive branch current IX is 3 A, then, equal to the 
difference between the 4-A IL and the 1-A IC, as shown in Figure 
10b. 

The next step is to calculate IT as the phasor sum of IR and IX. Then 

I T  I R

2  IX

2

 4
2
 3

2

 16  9  25

I T  5 A

 

The phasor diagram for IT is shown in Figure 10c. 

 

Figure 10 
Total Line Current IT of Parallel Circuit 
(a) Branches of R, XL, and XC in Parallel 

(b) Equivalent Circuit with IR and Net Reactive Branch Current 
(c) Phasor Diagram 

 

ZT=VA/IT   

This gives the total impedance of a parallel circuit. In this example, 

ZT is 100 V/5 A, which equals 20. This value is the equivalent 
impedance of all three branches in parallel across the source. 

Phase Angle  
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The phase angle of the parallel circuit is found from the branch 

currents. Now  is the angle whose tangent equals IX/IR. 

For this example, IX is the net inductive current of the 3-A IL. Also, 

IR is 4 A. These phasors are shown in Figure 10c. Then  is a 
negative angle with the tangent of -3/4 or -0.75. This phase angle is 
-37°, approximately. 

The negative angle for IT indicates lagging inductive current. The 
value of -37° is the phase angle of IT with respect to the voltage 
reference VA. 

When ZT is calculated as VA/IT for a parallel circuit, the phase angle 
of ZT is the same value as for IT but with opposite sign. In this 
example, ZT is 20  with a phase angle of +37°, for an IT of  
5 A with an angle of -37°. We can consider that ZT has the phase of 
the voltage source with respect to IT. 

More Parallel Branches   

Figure 11 illustrates how any number of parallel resistances and 
reactances can be combined. The total resistive branch current IR of 
4 A is the sum of 2 A each for the R1 branch and the R2 branch. Note 
that the order of connection does not matter, since the parallel 
branch currents add in the main line. Effectively, two 50- 
resistances in parallel are equivalent to one 25- resistance. 

 
Figure 11 

Parallel AC Circuit With More Components than Figure 10, 

But The Same Values of Z, I, and  
 

Similarly, the total inductive branch current IL is 4 A, equal to  
3 A for I L1

 and 1 A for I L2
. Also, the total capacitive branch current 

IC is 1 A, equal to 1/2 A each for IC1
 and IC 2

. 

The net reactive branch current IX is 3 A, then, equal to a 4-A IL 
minus a 1-A IC. Since IL is larger, the net current is inductive. 
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The circuit in Figure 11 is equivalent to the circuit in Figure 10, 
therefore. Both have a 4-A resistive current IR and a 3-A net 
inductive current IL. These values added by phasors make a total of 
5 A for IT in the main line. 

Practice Problems — Section 6 

a. In Figure 10, what is the net reactive branch current? 

b. In Figure 11, what is the net reactive branch current. 
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Series-Parallel Reactance and Resistance 

Figure 12 shows how a series-parallel circuit can be reduced to a 
series circuit with just one reactance and one resistance. The 
method is straightforward as long as resistance and reactance are 
not combined in one parallel bank or series string. 

 
Figure 12 

Reducing a Series-Parallel Circuit with R, XL, and XC to a Series Circuit 
With one R and One X.   (a) Actual Circuit (b) Simplified Arrangement 

(c) Series Equivalent Circuit  (d) Phasor Diagram 
 

Working backward toward the generator from the outside branch 
in Figure 12a, we have an XL1

 and an X L 2
 of 100  each in series, 

which total 200 . This string in Figure 12a is equivalent to X L 5
 in 

Figure 12b. 

In the other branch, the net reactance of X L 3
 and XC is equal to 600 

 minus 400 . This is equivalent to the 200  of X L 4
 in Figure 12b. 

The X L 4
 and X L 5

 of 200  each in parallel are combined for an XL 
of 100 . 

In Figure 12c, the 100- XL is in series with the 100- R1-2. This 
value is for R1 and R2 in parallel. 
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The phasor diagram for the equivalent circuit in Figure 12d shows 
the total impedance Z of 141  for a 100- R in series with a 100- 
XL. 

With a 141- impedance across the applied VT of 100 V, the current 
in the generator is 0.7 A. The phase angle 0 is 45° for this circuit. 

Practice Problems — Section 7 

Refer to Figure 12. 

a. How much is XL1
 + X L 2

? 

b. How much is X L 3
 - XC? 

c. How much is X L 4
 in parallel with X L 5

? 

Real Power 

In an ac circuit with reactance, the current I supplied by the 
generator either leads or lags the generator voltage V. Then the 
product VI is not the real power produced by the generator, since 
the voltage may have a high value while the current is near zero, or 
vice versa. The real power, however, can always be calculated as 
I2R, where R is the total resistive component of the circuit, because 
current and voltage have the same phase in a resistance. To find the 
corresponding value of power as VI, this product must be 

multiplied by the cosine of the phase angle . Then 

Real power =I2R (24-3) 

or 

Real power - VI cos  (24-4) 

where V and I are in rms values, to calculate the real power, in 
watts. Multiplying VI by the cosine of the phase angle provides the 
resistive component for real power equal to I2R. 
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Figure 13 
Real Power In Series Circuit. 

(a) Schematic Diagram  (b)  Phasor Diagram 

For example, the ac circuit in Figure 13 has 2 A through a 100- R 

in series with the XL of 173 . Therefore 

Real power = I2R = 4 x 100 

Real power = 400 W 

Furthermore, in this circuit the phase angle is 60° with a cosine of 
0.5. The applied voltage is 400 V. Therefore 

Real power = VI cos  = 400 x 2 x 0.5 

Real power = 400 W 

In both examples, the real power is the same 400 W, because this is 
the amount of power supplied by the generator and dissipated in 
the resistance. Either formula can be used for calculating the real 
power, depending on which is more convenient. 

Real power can be considered as resistive power, which is 
dissipated as heat. A reactance does not dissipate power but stores 
energy in the electric or magnetic field. 

Power Factor   

Because it indicates the resistive component, cos  is the power 
factor of the circuit, converting the VI product to real power. For 
series circuits, use the formula 

Power factor = cos  = 
R

Z
  

 = 60° 
 
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or for parallel circuits 

Power factor = cos  = 
I R

I T

 (24-6) 

In Figure 13, as an example of a series circuit, we use R and Z for 
the calculations: 

Power factor = cos  = 
R

Z


100 

200 
 0.5 

For the parallel circuit in Figure 10, we use the resistive current IR 
and the IT: 

Power factor = cos  = 
I R

IT


4 A

5 A
 0.8  

The power factor is not an angular measure but a numerical ratio, 
with a value between 0 and 1, equal to the cosine of the phase 
angle. 

With all resistance and zero reactance, R and Z are the same for a 
series circuit, or IR and IT are the same for a parallel circuit, and the 
ratio is 1. Therefore, unity power factor means a resistive circuit. At 
the opposite extreme, all reactance with zero resistance makes the 
power factor zero, meaning that the circuit is all reactive. 

Apparent Power   

When V and I are out of phase because of reactance, the power of V 
x I is called apparent power. The unit is voltamperes (VA) instead 
of watts, since the watt is reserved for real power. 

For the example in Figure 13, with 400 V and the 2-A I, 60° out of 
phase, the apparent power is VI, or 400 x 2 = 800 VA. Note that 
apparent power is the VI product alone, without considering the 
power factor cos . 

The power factor can be calculated as the ratio of real power to 
apparent power, as this ratio equals cos . As an example, in Figure 
13, the real power is 400 W, and the apparent power is 800 VA. The 
ratio of 400/800 then is 0.5 for the power factor, the same as cos 60°. 
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The VAR  

This is an abbreviation for voltampere reactive. Specifically, VARs 
are voltamperes at the angle of 90°. 

In general, for any phase angle  between V and I, multiplying VI 
by sin  gives the vertical component at 90° for the value of the 
VARs. In Figure 13, the value of VI sin 60° is 800 x 0.866 = 692.8 
VAR. 

Note that the factor sin  for the VARs gives the vertical or reactive 
component of the apparent power VI. However, multiplying VI by 
cos  as the power factor gives the horizontal or resistive 
component for the real power. 

Correcting the Power Factor   

In commercial use, the power factor should be close to unity for 
efficient distribution. However, the inductive load of motors may 
result in a power factor of 0.7, as an example, for the phase angle of 
45°. To correct for this lagging inductive component of the current 
in the main line, a capacitor can be connected across the line to 
draw leading current from the source. To bring the power factor up 
to 1.0, that is, unity PF, the value of capacitance is calculated to take 
the same amount of voltamperes as the VARs of the load. 

Practice Problems — Section 8 

a. What is the unit for real power? 

b. What is the unit for apparent power? 

AC Meters 

The D’Arsonval moving-coil type of meter movement will not read 
if it is used in an ac circuit because the average value of an 
alternating current is zero. Since the two opposite polarities cancel, 
an alternating current cannot deflect the meter movement either 
up-scale or down-scale. An ac meter must produce deflection of the 
meter pointing up-scale regardless of polarity. This deflection is 
accomplished by one of the following three methods for ac meters. 
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1. Thermal type. In this method, the heating effect of the current, 
which is independent of polarity, is used to provide meter 
deflection. Two examples are the thermocouple type and hot-
wire meter. 

2. Electromagnetic type. In this method, the relative magnetic 
polarity is maintained constant although the current reverses. 
Examples are the iron-vane meter, dynamometer, and 
wattmeter. 

3. Rectifier type. The rectifier changes the ac input to dc output for 
the meter, which is usually a D’Arsonval movement. This type 
is the most common for ac voltmeters generally used for the 
audio and radio frequencies. 

All ac meters have scales calibrated in rms values, unless noted 
otherwise on the meter. 

A thermocouple consists of two dissimilar metals joined together at 
one end but open at the opposite side. Heat at the short-circuited 
junction produces a small dc voltage across the open ends, which 
are connected to a dc meter movement. In the hot-wire meter, 
current heats a wire to make it expand, and this motion is 
converted into meter deflection. Both types are used as ac meters 
for radio frequencies. 

The iron-vane meter and dynamometer have very low sensitivity, 
compared with a D’Arsonval movement. They are used in power 
circuits, for either direct current or 60-Hz alternating current. 

Practice Problems — Section 9 

Answer True or False. 

a. The iron-vane meter can read alternating current. 

b. The D’Arsonval meter movement is for direct current 
only. 
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Wattmeters 

The wattmeter uses fixed coils to indicate current in the circuit, 
while the movable coil indicates voltage (Figure 14). The deflection 
then is proportional to power. Either dc power or real ac power can 
be read directly by the wattmeter. 

 

Figure 14 
Wattmeter  (a) Schematic of Voltage and Current Coils 

(b) Meter For Range of 0 to 200 W.  (W. M. Welch Mfg. Co.) 

In Figure 14a, the coils L I1
 and L I2

 in series are the stationary coils 
serving as an ammeter to measure current. The two I terminals are 
connected in one side of the line in series with the load. The 
movable coil LV and its multiplier resistance RM are used as a 
voltmeter, with the V terminals connected across the line in parallel 
with the load. Then the current in the fixed coils is proportional to 
I, while the current in the movable coil is proportional to V. As a 
result, the deflection is proportional to the VI product, which is 
power. 

Furthermore, it is the VI product for each instant of time that 
produces deflection. For instance, if the V value is high when the I 
value is low, for a phase angle close to 90°, there will be little 
deflection. The meter deflection is proportional to the watts of real 
power, therefore, regardless of the power factor in ac circuits. The 
wattmeter is commonly used to measure power from the 60-Hz 
power line. For radio frequencies, however, power is generally 
measured in terms of heat transfer. 
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Practice Problems — Section 10 

a. Does a wattmeter measure real or apparent power? 

b. In Figure 14, does the movable coil of the wattmeter measure V 
or I? 

Summary 

The differences in R, XL, XC, and Z are listed in the Table 1, but the 
following general features should also be noted. Ohms of 
opposition limit the amount of current in dc circuits or ac circuits. 
Resistance R is the same for either case. However, ac circuits can 
have ohms of reactance because of the variations in alternative 
current or voltage. Reactance XL is the reactance of an inductance 
with sine-wave changes in current. Reactance XC is the reactance of 
a capacitor with sine-wave changes in voltage. 

 
Table 1 

Types of Ohms in AC Circuits 
 

Both XL and XC are measured in ohms, like R, but reactance has a 
90° phase angle, while the phase angle for resistance is 0°. A circuit 
with steady direct current cannot have any reactance. 

Ohms of XL or XC are opposite, as XL has a phase angle of +90°, 
while XC has the angle of -90°. Any individual XL or XC always has 
a phase angle that is exactly 90°. 

Ohms of impedance Z result from the phasor combination of 
resistance and reactance. In fact, Z can be considered the general 
form of any ohms of opposition in ac circuits. 
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Z can have any phase angle, depending on the relative amounts of 
R and X. When Z consists mostly of R with little reactance, the 
phase angle of Z is close to 0°. With R and X equal, the phase angle 
of Z is 45°. Whether the angle is positive or negative depends on 
whether the net reactance is inductive or capacitive. When Z 
consists mainly of X with little R, the phase angle of Z is close to 
90°. 

The phase angle is  Z for Z or VT with respect to the common I in a 
series circuit. With parallel branch currents,  I is for IT in the main 
line with respect to the common voltage. 

Practice Problems Section 11 

a. Which of the following does not change with 
frequency: Z, XL, XC, or R? 

b. Which has lagging current: R, XL, or XV? 

c. Which has leading current: R, XL, or XV? 

Summary of Types of Phasors in AC Circuits 

The phasors for ohms, volts, and amperes are shown in Figure 15. 
Note the similarities and differences: 
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Figure 15 

Summary of Phasor Relations in AC Circuits 
(a) Reactance XL and R in Series  (b) Reactance XC and R in Series 

(c) Parallel Branches with IC and IR  (d) Parallel Branches With IL and IR 

 
Series Components In series circuits, ohms and voltage drops have 
similar phasors. The reason is the common I for all the series 
components. Therefore: 

VR or IR has the same phase as R. 

VL or IXL has the same phase as XL. 

VC or IXC has the same phase as XC. 

Resistance   

The R, VL, and IR always have the same angle because there is no 
phase shift in a resistance. This applies to R in either a series or a 
parallel circuit. 

Reactance   

Reactances XL and XC are 90° phasors in opposite directions. The XL 
or VL has the angle of +90° with an upward phasor, while the XC or 
VC has the angle of -90° with a downward phasor. 
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Reactive Branch Currents   

The phasor of a parallel branch current is opposite from its 
reactance. Therefore, IC is upward at +90°, opposite from XC 
downward at -90°. Also, IL is downward at -90°. opposite from XL 
upward at +90°. 

In short, IC and IL are opposite from each other, and both are 
opposite from their corresponding reactances. 

Phase Angel  Z   

The phasor resultant for ohms of reactance and resistance is the 
impedance Z. The phase angle  for Z can be any angle between 0 
and 90°. In a series circuit Z for Z is the same as  for VT with 
respect to the common current I. 

Phase Angle  I   

The phasor resultant of branch currents is the total line current IT. 
The phase angle of IT can be any angle between 0 and 90°. In a 
parallel circuit,  I is the angle of IT with respect to the applied 
voltage VA. 

The I is the same value but of opposite sign from Z for Z, which is 
the impedance of the combined parallel branches. 

The reason for the change of sign is that I is for IT with respect to 
the common V, but Z is for VT with respect to the common current 
I. 

Such phasor combinations are necessary in sine-wave ac circuits in 
order to take into account the effect of reactance. The phasors can 
be analyzed either graphically, as in Figure 15, or by the shorter 
technique of complex numbers, with a j operator that corresponds 
to a 90° phasor. 

Practice Problems — Section 12 

a. Of the following three phasors, which two are 180° 
opposite: VL, VC, or VR? 

b. Of the following three phasors, which two are out of 
phase by 90°: IR, IT, or IL? 
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Summary 

1. In ac circuits with resistance alone, the circuit is analyzed the 
same way as for dc circuits, generally with rms ac values. 
Without any reactance, the phase angle is zero. 

2. When capacitive reactances alone are combined, the XC values 
are added in series and combined by the reciprocal formula in 
parallel, just like ohms of resistance. Similarly, ohms of XL alone 
can be added in series or combined by the reciprocal formula in 
parallel, just like ohms of resistance. 

3. Since XC and XL are opposite reactances, they cancel each other. 
In series, the ohms of XC and XL cancel. In parallel, the 
capacitive and inductive branch currents IC and IL cancel. 

4. In ac circuits with R, XL, and XC, they can be reduced to one 
equivalent resistance and one net reactance. 

5. In series, the total R and net X at 90° are combined as 

Z  R
2
X

2 . The phase angle of the series R and X is the angle 
with tangent ±X/R. First we calculate ZT and then divide into 
VT to find I. 

6. For parallel branches, the total IR and net reactive IX at 90° are 

combined as IT  IR
2
 IX

2
. The phase angle of the parallel R 

and X is the angle with tangent ±IX/IR. First we calculate IT and 
then divide into VA to find ZT. 

7. The quantities R, XL, XC, and Z in ac circuits all are ohms of 
opposition. The differences with respect to frequency and phase 
angle are summarized in Table 1. 

8. The phasor relations for resistance and reactance are 
summarized in Figure 15. 

9. In ac circuits with reactance, the real power in watts equals I2R, 

or VI cos , where  is the phase angle. The real power is the 

power dissipated as heat in resistance. Cos  is the power factor 
of the circuit. 

10. The wattmeter measures real ac power or dc power. 
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Self-Examination 

Choose (a), (b), (c), or (d). 

1. In an ac circuit with resistance but no reactance, (a) two 1000- 
resistances in series total 1414 ; (b) two 1000- resistances in 
series total 2000 ; (c) two 1000- resistances in parallel total 
707 ; (d) a 1000- R in series with a 400- R totals 600 . 

2. An ac circuit has an 100- X C1
, a 50- X C2

, a 40-XL1
, and a 

30- X L 2
, all in series. The net reactance is equal to (a) an 80- 

XL; (b) a 200- XL; (c) an 80- XC; (d) a 200- XC. 

3. An ac circuit has a 40- R, a 90- XL, and a 60- XC, all in series. 
The impedance Z equals (a) 50 ; (b) 70.7 ; (c) 110 ; (d) 190 . 

4. An ac circuit has a 100- R, a 100- XL, and a 100- XC, all in 
series. The impedance Z of the series combination is equal to (a) 
33-1/3 ; (b) 70.7 ; (c) 100 ; (d) 300 . 

5. An ac circuit has a 100- R, a 300- XL, and a 200- XC, all in 
series. The phase angle  of the circuit equals (a) 0°; (b) 37°; (c) 
45°; (d) 90°. 

6. The power factor of an ac circuit equals (a) the cosine of the 
phase angle: (b) the tangent of the phase angle; (c) zero for a 
resistive circuit; (d) unity for a reactive circuit. 

7. Which phasors in the following combinations are not in 
opposite directions? (a) XL and XC; (b) XL and IC; (c) IL and IC; (d) 
XC and IC. 

8. In Figure 8a, the voltage drop across XL equals (a) 60 V; (b) 66-
2/3 V; (c) 120 V; (d) 200 V. 

9. In Figure 10a, the combined impedance of the parallel circuit 

equals (a) 5 ; (b) 12.5 ; (c) 20 ; (d) 100 . 

10. The wattmeter (a) has voltage and current coils to measure real 
power; (b) has three connections, two of which are used at a 
time; (c) measures apparent power because the current is the 
same in the voltage and current coils; (d) can measure dc power 
but not 60-Hz ac power. 
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Essay Questions 

 

1. Why can series or parallel resistances be combined in ac circuits 
the same way as in dc circuits? 

2. (a) Why do XL and XC reactances in series cancel each other? (b) 
With XL and XC reactances in parallel, why do their branch 
currents cancel? 

3. Give one difference in electrical characteristics comparing R and 
XC, R and Z, XC and C, XL and L. 

4. Name three types of ac meters. 

5. Make a diagram showing a resistance R1 in series with the load 
resistance RL, with a wattmeter connected to measure the power 
in RL. 

6. Make a phasor diagram for the circuit in Figure 8a showing the 
phase of the voltage drops IR, IXC, and IXL with respect to the 
reference phase of the common current I. 

7. Explain briefly why the two opposite phasors at +90° for XL and 
-90° for IL both follow the principle that any self-induced 
voltage leads the current through the coil by 90°. 

8. Why is it that a reactance phasor is always at exactly 90° but an 
impedance phasor can be less than 90°? 

9. Why must the impedance of a series circuit be more than either 
its X or R? 

10. Why must IT in a parallel circuit be more than either IR or IX? 
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Problems 

1. Refer to Figure 1a. (a) Calculate the total real power supplied by 
the source. (b) Why is the phase angle zero? (c) What is the 
power factor of the circuit? 

2. In a series ac circuit, 2 A flows through a 20- R, a 40- XL, and 
a 60- XC. (a) Make a schematic diagram of the series circuit. (b) 
Calculate the voltage drop across each series component. (c) 
How much is the applied voltage? (d) Calculate the power 
factor of the circuit. (e) What is the phase angle ? 

3. A parallel circuit has the following five branches: three 
resistances of 30  each; an XL of 600 ; and XC of 400 . (a) 
Make a schematic diagram of the circuit. (b) If 100 V is applied, 
how much is the total line current? (c) What is the total 
impedance of the circuit? (d) What is the phase angle ? 

4. Referring to Figure 8, assume that the frequency is doubled 
from 500 to 1000 Hz. Find XL, XC, Z, I, and  for this higher 
frequency. Calculate L and C. 

5. A series circuit has a 300- R, a 500- X C1
, a 300- X C2

, an 800-
 XL1

, and 400- X L 2
, all in series with an applied voltage V of 

400 V. (a) Draw the schematic diagram with all components. (b) 
Draw the equivalent circuit reduced to one resistance and one 
reactance. (c) Calculate ZT, I, and . 

6. Repeat Prob. 5 for a circuit with the same components in 
parallel across the voltage source. 

7. A series circuit has a 600- R, a 10-H inductance L, and a 4-F 
capacitance C, all in series with the 60-Hz 120-V power line as 
applied voltage. (a) Find the reactance of L and of C. (b) 
Calculate ZT, I, and  Z. 

8. Repeat Prob. 7 for the same circuit, but the 120-V source has f = 
10 Mhz. 
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9. (a) Referring to the series circuit Figure 6, what is the phase 
angle between the IXL voltage of 360 V and the IXC voltage of 
240 V? (b) Draw the two sine waves for these voltages, showing 
their relative amplitudes and phase corresponding to the phasor 
diagram in Figure 6b. Also show the resultant sine wave of 
voltage across the net XL. 

10. How much resistance dissipates 600 W of ac power, with 4.3-A 
rms current? 

11. How much resistance must be inserted in series with a 0.95-H 
inductance to limit the current to 0.25 A from the 120-V 60-Hz 
power line? 

12. How much resistance must be inserted in series with a 10-F 
capacitance to provide a phase angle of -45°? The source is the 
120-V 60-Hz power line. 

13. With the same R as in Prob. 12, what value of C is necessary for 
the angle of -45° at the frequency of 2 Mhz? 

14. A parallel ac circuit has the following branch currents:  

I R1
= 4.2 mA; I R2

= 2.4 mA; I L1
= 7 mA; I L2

= 1 mA; IC = 6 mA. 
Calculate IT. 

15. With 420 mV applied, an ac circuit has the following parallel 
branches: R1 = 100 ; R2 = 175 ; XL1

= 60 ;  

X L 2
= 420 ; XC = 70 . Calculate IT,  I, and ZT. 

16. The same components as in Prob. 15 are in series. Calculate ZT, 
I, and  Z. 

17. What R is needed in series with a 0.01-F capacitor for a phase 
angle of -64°, with f of 800 Hz? 
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Answers to Practice Problems 

Section 1 a. 0° 

   b. 0° 

Section 2. a. 90° 

   b. -90° 

Section 3 a. -90° 

   b. 90° 

Section 4 a. 20  

   b. 1 A 

Section 5 a. XC = 30  

   b. XC = 30  

Section 6 a. IL = 3 A 

   b. IL = 3 A 

Section 7 a. 200  

   b. 200  

   c. 100  

Section 8 a. Watt 

   b. Voltampere 

Section 9 a. T 

   b. T 

Section 10 a. Real power 

   b. V 

Section 11 a. R 

   b. XL 

   c. XC 

Section 12 a. VL and VC 

   b. IR and IL 
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Answers to Special Problems 

1. (a) 100 W 
 (b) No reactance 
 (c) 1 
2. 
3. (b) I = 10 A, approx. 

 (c) Z = 10  

 (d)  = 0° 
4. 

5. (c) ZT = 500  
   I = 0.8 A 

    Z = 53° 
6. 
7. (a) XL = 0, approx. 

   XC = 665  

 (b) ZT = 890  
   I = 135 mA 

    Z = -47.9° 
8. 
9. (a) 180° 
10. 

11. R = 102 
12. 
13. C = 300 pF 
14. 

15. IT = 6.9 mA,  I = -16.9° 

 ZT = 60.9 ,  Z = 16.9° 
16. 

17. R = 9704 
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Complex Numbers for AC Circuits 

 

Complex numbers form a numerical system that includes the phase 
angle of a quantity, with its magnitude. Therefore, complex 
numbers are useful in ac circuits when the reactance of XL or XC 
makes it necessary to consider the phase angle. 

Any type of ac circuit can be analyzed with complex numbers, but 
they are especially convenient for solving series-parallel circuits 
that have both resistance and reactance in one or more branches. 
Actually, the use of complex numbers is probably the best way to 
analyze ac circuits with series-parallel impedances. 

Important terms in this chapter are: 

admittance real numbers 

imaginary numbers rectangular form 

j operator susceptance 

polar form  

More details are explained in the following 

sections: 

1. Positive and Negative Numbers 
2. The j Operator 
3. Definition of a Complex Number 
4. How Complex Numbers are Applied to AC Circuits 
5. Impedance in Complex form 
6. Operations with Complex Numbers 
7. Magnitude and Angle of a Complex Number 
8. Polar Form of Complex Numbers 
9. Converting Polar to Rectangular Form 
10. Complex Numbers in Series AC Circuits 
11. Complex Numbers in Parallel AC Circuits 
12. Combining Two Complex Branch Impedances 
13. Combining Complex Branch Currents 
14. Parallel Circuit with Three Complex Branches 
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Positive and Negative Numbers 

 

Figure 1 
Positive and Negative Numbers 

Our common use of numbers as either positive or negative 
represents only two special cases. In their more general form, 
numbers have both quantity and phase angle. In Figure 1, positive 
and negative numbers are shown as corresponding to the phase 
angles of 0 and 180°, respectively. 

For example, the numbers 2, 4, and 6 represent units along the 
horizontal or x axis, extending toward the right along the line of 
zero phase angle. Therefore, positive numbers really represent 
units having the phase angle of 0°. Or this phase angle corresponds 
to the factor of +1. To indicate 6 units with zero phase angle, then, 6 
is multiplied by +1 as a factor for the positive number 6. The + sign 
is often omitted, as it is assumed unless indicated otherwise. 

In the opposite direction, negative numbers correspond to 180°. Or, 
this phase angle corresponds to the factor of -1. Actually, -6 
represents the same quantity as 6 but rotated through the phase 
angle of 180°. The angle of rotation is the operator for the number. 
The operator for -1 is 180°; the operator for +1 is 0°. 

Practice Problems — Section 1 

a. What is the angle for the number +5? 

a. What is the angle for the number -5? 
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The j Operator 

 

Figure 2 
The j Axis at 90° From Real Axis 

The operator for a number can be any angle between 0 and 360°. 
Since the angle of 90° is important in ac circuits, the factor j is used 
to indicate 90°. See Figure 2. Here, the number 5 means 5 units at 
0°, the number -5 is at 180°, while j5 indicates the 90° angle. 

The j is usually written before the number. The reason is that the j 
sign is a 90° operator, just as the + sign is a 0° operator and the - 
sign is a 180° operator. Any quantity at right angles to the zero axis, 
therefore, 90° counterclockwise, is on the +j axis. 

In mathematics, numbers on the horizontal axis are real numbers, 
including positive and negative values. Numbers on the j axis are 
called imaginary numbers, only because they are not on the real axis. 
Also, in mathematics the abbreviation I is used in place of j. In 
electricity, however, j is used to avoid confusion with I as the 
symbol for current. Furthermore, there is nothing imaginary about 
electrical quantities on the j axis. An electric shock from j500 V is 
just as dangerous as 500 V positive or negative. 

More featured of the j operator are shown in Figure 3. The angle of 
180° corresponds to the j operation of 90° repeated twice. This 
angular rotation is indicated by the factor j2. Note that the j 
operation multiplies itself, instead of adding. 

Since j2 means 180°, which corresponds to the factor of -1, we can 
say that j2 is the same as -1. In short, the operator j2 for a number 
means multiply by -1. For instance, j28 is -8. 
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Figure 3 

Furthermore, the angle of 270° is the same as -90°, which 
corresponds to the operator -j. These characteristics of the j 
operator are summarized as follows: 

0° = 1 

90° = j 

180° = j2 = -1 

270° = j3 = j2 x j = -1 x j = -j 

360° = same as 0° 

As examples, the number 4 or -4 represents 4 units on the real 
horizontal axis; j4 means 4 units with a leading phase angle of 90°; -
j4 means 4 units with a lagging phase angle of -90°. 

Practice Problems — Section 2 

a. What is the angle for the operator j? 

b. What is the angle for the operator -j? 
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Definition of a Complex Number 

The combination of a real and imaginary term is a complex 
number. Usually, the real number is written first. As an example, 3 
+ j4 is a complex number including 3 units on the real axis added to 
4 units 90° out of phase on the j axis. The name complex number just 
means that its terms must be added as phasors. 

Phasors for complex numbers are shown in Figure 4. The +j phasor 
is up for 90°; the -j phasor is down for -90°. The phasors are shown 
with the end of one joined to the start of the next, to be ready for 
addition. Graphically, the sum is the hypotenuse of the right 
triangle formed by the two phasors. Since a number like 3 + j4 
specifies the phasors in rectangular coordinates, this system is the 
rectangular form of complex numbers. 

 
Figure 4 

Phasors Corresponding to Real Terms and j Terms, In 
Rectangular Coordinates 

Be careful to distinguish a number like j2, where 2 is a coefficient, 
from j2, where 2 is the exponent. The number j2 means 2 units up 
on the j axis of 90°. However, j2 is the operator of -1, which is on the 
real axis in the negative direction. 

Another comparison to note is between j3 and j3. The number j3 is 3 
units up on the j axis, while j3 is the same as the -j operator, which 
is down on the -90° axis. 

Also note that either the real term or j term can be the larger of the 
two. When the j term is larger, the angle is more than 45°; when the 
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j term is smaller, the angle is less than 45°. If the j term and the real 
term are equal, the angle is 45°. 
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Practice Problems — Section 3 

Answer True or False. 

a. For 7 + j6, the 6 is at 90° leading the 7. 

b. For 7 - j6, the 6 is at 90° lagging the 7. 

How Complex Numbers Are Applied to AC Circuits 

The applications are just a question of using a real term for 0°, +j 
for 90°, and -j for -90°, to denote the phase angles. Specifically, 
Figure 5 below illustrates the following rules: 

An angle of 0° or a real number without any j operator is used for 
resistance R. For instance, 3  of R is stated just as 3 . 

An angle of 90° or +j is used for inductive reactance XL. For 
instance, a 4- XL is j4 . This rule always applies to XL, whether it 
is in series or parallel with R. The reason is the fact that XL 
represents voltage across an inductance, which always leads the 
current through the inductance by 90°. The +j is also used for VL. 

An angle of -90° or -j is used for capacitive reactance XC. For 
instance, a 4- XC is -j4 W. This rule always applies to XC, whether 
it is in series or parallel with R. The reason is the fact that XC 
represents voltage across a capacitor, which always lags the charge 
and discharge current of the capacitor by -90°. The -j is also used 
for VC. 

 

Figure 5 

Rectangular Form of Complex Numbers For Impedances 

(a) Reactance XL is +J  (b) Reactance XC is -j 
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With reactive branch currents, the sign for j is reversed, compared 
with reactive ohms, because of the opposite phase angle. As shown 
in Figure 6a and b, -j is used for inductive branch current IL and +j 
for capacitive branch current IC. 

 

Figure 6 
Rectangular Form of Complex Numbers For Branch Currents 

(a) Current IL is -j   (b) Current LC is + j 

Practice Problems — Section 4 

a. Write 3 k of KL with the j operator. 

b. Write 5 mA of IL with the j operator. 

Impedance in Complex Form 

The rectangular form of complex numbers is a convenient way to 
state the impedance of series resistance and reactance. In Figure 5a, 
the impedance is 3 + j4, as Za is the phasor sum of a 3- R in series 
with j4  for XL. Similarly, Zb is 3 - j4 for a 3- R in series with -j4  
for XC. The minus sign results from adding the negative term for -j. 
More examples are: 

For a 4-k R and a 2-k XL in series, 

ZT = 4000 + j2000 

For a 3-k R and a 9-k XC in series, 

ZT = 3000 - j9000 
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For a zero R and a 7- XL in series, 

ZT = 0 + j7 

For a 12- R and a zero reactance in series, 

ZT = 12 + j0 

Note the general form of stating Z = R ± jX. If one term is zero, 
substitute 0 for this term, in order to keep Z in its general form. 
This procedure is not required, but there is usually less confusion 
when the same form is used for all types of Z. 

The advantage of this method is that multiple impedances written 
as complex numbers can then be calculated as follows: 

ZT = Z1 + Z2 + Z3 + … + etc. 

for series impedances 

1

ZT


1

Z1


1

Z2


1

Z3

 etc. 

 for parallel impedances 

or 

Z T 
Z1 x Z2

Z 1  Z 2

 for two parallel impedances 

Examples are shown in Figure 7. The circuit in Figure 7a is just a 
series combination of resistances and reactances. Combining the 
real terms and j terms separately, ZT = 12 + j4. The calculations are 
3 + 9 = 12  for R and j6 added to -j2 equals j4 for the next XL. 

The parallel circuit in Figure 7b shows that XL is +j and XC is -j even 
though they are in parallel branches, as they are reactances, not 
currents. 

So far, these types of circuits can be analyzed with or without 
complex numbers. For the series-parallel circuit in Figure 7c, 
however, the notation of complex numbers is necessary to state the 
complex impedance ZT, consisting of branches with reactance and 
resistance in one or more of the branches. Impedance ZT is just 
stated here in its form as a complex impedance. In order to 
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calculate ZT, some of the rules described in the next section must be 
used for combining complex numbers. 

 

Figure 7 
Reactance XL is a +j Term and XC is a -j Term, Whether in Series 

or in Parallel  (a) Series Circuit  (b) Parallel Branches  (c) Complex 
Branch Impedances Z1 and Z2 in Parallel 

 

Practice Problems — Section 5 

Write the following impedances in complex form. 

a. XL of 7  in series with R of 4 . 

b. XC of 7  in series with zero R. 

Operations with Complex Numbers 

Real numbers and j terms cannot be combined directly because 
they are 90° out of phase. The following rules apply: 

For Addition or Subtraction   

Add or subtract the real and j terms separately: 

(9 + j5) + (3 + j2) = 9 + 3 + j5 + j2 = 12 + j7 

(9 + j5) + (3 - j2) = 9 + 3 + j5 - j2 = 12 + j3 

(9 + j5) + (3 - j8) = 9 + 3 + j5 - 8 = 12 - j3 
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The answers should be in the form of R ± jX, where R is the 
algebraic sum of all the real or resistive terms and X is the algebraic 
sum of all the imaginary or reactive terms. 

To Multiply or Divide a j Term by a Real Number   

Just multiply or divide the numbers. The answer is still a j term. 
Note the algebraic signs in the following examples. If both factors 
have the same sign, either + or -, the answer is +; if one factor is 
negative, the answer is negative. 

4 x j3 = j12 j12 ÷ 4 = j3 

j5 x 6 = j30 j30 ÷ 6 = j5 

j5 x (-6) = -j30 -j30 ÷ (-6) = j5 

-j5 x 6 = -j30 -j30 ÷ 6 = -j5 

-j5 x (-6) = j30 j30 ÷ (-6) = -j5 

To Multiply or Divide a Real Number by a Real 

Number   

Just multiply or divide the real numbers, as in arithmetic. There is 
no j operation. The answer is still a real number. 

To Multiply a j Term by a j Term   

Multiply the numbers and the j coefficients to produce a j2 term. 
The answer is a real term because j2 is -1, which is on the real axis. 
Multiplying two j terms shifts the number 90° from the j axis to the 
real axis of 180°. As examples: 

j4 x j3 = j212 = (-1)(12) 

= -12 

j4 x (-j3) = -j212 = -(-1)(12) 

= 12 

To Divide a j Term by a j Term   

Divide the j coefficients to produce a real number: the j factors 
cancel. For instance: 

j12 ÷ j4 = 3 -j12 ÷ j4 = -3 
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j30 ÷ j5 = 6 j30 ÷ (-j6) = -5 

j15 ÷ j3 = 5 -j15 ÷ (-j3) = 5 
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To Multiply Complex Numbers   

Follow the rules of algebra for multiplying two factors, each having 
two terms: 

       (9 + j5) x (3 - j2) = 27 + j15 - j18 - j210 

     = 27 - j3 - (-1)10 

     = 27 - j3 + 10 

     = 37 - j3 

Note that -j210 equals +10 because the operator j2 is -1 and -(-1)10 
becomes +10. 

To Divide Complex Numbers   

This process becomes more involved because division of a real 
number by an imaginary number is not possible. Therefore, the 
denominator must first be converted to a real number without any j 
term. 

Converting the denominator to a real number without any j term is 
called rationalization of the fraction. To do this, multiply both 
numerator and denominator by the conjugate of the denominator. 
Conjugate complex numbers have equal terms but opposite signs 
for the j term. For instance, (1 + j2) has the conjugate (1 - j2). 

Rationalization is permissible because the value of fraction is not 
changed when both numerator and denominator are multiplied by 
the same factor. This procedure is the same as multiplying by 1. In 
the following example of division with rationalization the 
denominator (1 + j2) has the conjugate (1 - j2): 

4  j1

1  j2


4  j1

1 j2
x

(1 j2)

(1 j2)


4  j8  j1 j 2

2

1 j 2
4


4  j9  2

1 4


2  j9

5

 0.4  j1.8

 



 

Power Production Test Technician April, 2010  

Training  Page 258 

As a result of the rationalization, 4 - j1 has been divided by 1 + j2 to 
find the quotient that is equal to 0.4 - j1.8. 

Note that the product of a complex number and its conjugate 
always equals the sum of the squares of the numbers in each term. 
As another example, the product of (2 + j3) and its conjugate (2 - j3) 
must be 4 + 9, which equals 13. Simple numerical examples of 
division and multiplication are given here because when the 
required calculations become too long, it is easier to divide and 
multiply complex numbers in polar form, as explained in Section 8. 

Practice Problems — Section 6 

a. (2 + j3) + (3 + j4) = ? 

b. (2 + j3) x 2 = ? 

Magnitude and Angle of a Complex Number 

In electrical terms a complex impedance (4 + j3) means 4  of 

resistance and 3  of inductive reactance with a leading phase 
angle of 90°. See Figure 8a. The magnitude of Z is the resultant, 

equal to 16  9  25  5 . Finding the square root of the sum of 
the squares is vector or phasor addition of two terms in quadrature, 
90° out of phase. 

The phase angle of the resultant is the angle whose tangent is 3/4 

or 0.75. The angle equals 37°. Therefore, 4 + j3 = 5 37 . 

When calculating the tangent ratio, note that the j term is the 
numerator and the real term is the denominator because the 
tangent of the phase angle is the ratio of the opposite side to the 
adjacent side. With a negative j term, the tangent is negative, which 
means a negative phase angle. 

Note the following definitions: (4 + j3) is the complex number in 
rectangular coordinates. The real term is 4. The imaginary term is 
j3. The resultant 5 is the magnitude, absolute value, or modulus of 
the complex number. Its phase angle or argument is 37°. The 
resultant value by itself can be written as |5|, with vertical lines to 
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indicate it is the magnitude without the phase angle. The 
magnitude is the value a meter would read. 

For instance, with a current of 537  A in a circuit, an ammeter 
reads 5 A. As additional examples: 

2 + j4 = 4  16  (arctan 2) = 4.4763  

4 + j2 = 16  4  (arctan 0.5) = 4.4726.5  

8 + j6 = 64  36  (arctan 0.75) = 1037  

8 - j6 = 64  36  (arctan -0.75) = 10  37  

4 + j4 = 16  16  (arctan 1) = 5.6645  

4 - j4 = 16  16  (arctan -1) = 5.66  45 

Note that arctan 2, for example, means the angle with a tangent 
equal to 2. This can also be indicated as tan-1 2. In either case, the 
angle is specified as having 2 for its tangent, and the angle is 63.4°. 

Practice Problems — Section 7 

For the complex impedance 10 + j10 . 

a. Calculate the magnitude. 

b. Calculate the phase angle. 

Polar Form of Complex Numbers 

Calculating the magnitude and phase angle of a complex number is 
actually converting to an angular form in polar coordinates. As 
shown in Figure 8, the rectangular form 4 + j3 is equal to 537  in 
polar form. In polar coordinates, the distance out from the center is 
the magnitude of the vector Z. Its phase angle  is counterclockwise 
from the 0° axis. 
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Figure 8 
Magnitude and Angle of a Complex Number 

(a) Rectangular Form  (b) Polar Form 

To convert any complex number to polar form: 

1. Find the magnitude by phasor addition of the j term and real 
term. 

2. Find the angle whose tangent is the j term divided by the real 
term. As examples: 

2 + j4 = 4.4763  

4 + j2 = 4.4726.5  

8 + j6 = 1037  

8 - j6 = 10  37  

4 + j4 = 5.6645  

4 - j4 = 5.66  45 

These examples are the same as those given before for finding the 
magnitude and phase angle of a complex number. 
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The magnitude in polar form must be more than either term in 
rectangular form, but less than the arithmetic sum of the two terms. 

For instance, in 8 + j6 = 1037  the magnitude of 10 is more than 8 
or 6 but less than their sum of 14. 

Applied to ac circuits with resistance for the real term and 
reactance for the j term, then, the polar form of a complex number 
states the resultant impedance and its phase angle. Note the 
following cases for an impedance where either the resistance or 
reactance is reduced to zero. 

0 + j5 = 590  

0 - j5 = 5 90  

5 + j0 = 50  

The polar form is much more convenient for multiplying or 
dividing complex numbers. The reason is that multiplication in 
polar form is reduced to addition of the angles, and the angles are 
just subtracted for division in polar form. The following rules 
apply. 

For Multiplication   

Multiply the magnitudes but add the angles algebraically: 

2440x230  48  70

2440x(230)  48  70

12  20x3  50 36  70

12  2045  48 15

 

When you multiply by a real number, just multiply the 
magnitudes: 

4x230  830

4x2  30  8  30

4x230  830

4x(230)  830

 

This rule follows from the fact that a real number has an angle of 
0°. When you add 0° to any angle, the sum equals the same angle. 
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For Division   

Divide the magnitudes but subtract the angles algebraically: 

2440  230  1240  30

 1210

1220  350 420  50

 4  30

12  20  450 3  20  50

 3  70

 

To divide by a real number, just divide the magnitudes: 

1230  2  630

12  30  2  6  30
 

This rule is also a special case that follows from the fact that a real 
number has a phase angle of 0°. When you subtract 0° from any 
angle, the remainder equals the same angle. 

For the opposite case, however, when you divide a real number by 
a complex number, the angle of the denominator changes its sign in 
the answer in the numerator. This rule still follows the procedure of 
subtracting angles for division, since a real number has a phase 
angle of 0°. As examples, 

10

530


100

530

 20  30  2  30

10

5  30


100

5  30

 20  (30)  2  30

 

Stated another way, we can say that the reciprocal of an angle is the 
same angle but with opposite sign. Note that this operation is 
similar to working with powers of 10. Angles and powers of 10 
follow the general rules of exponents. 

Practice Problems — Section 8 

a. 620x230  ?  

b. 620 230  ? 
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Converting Polar to Rectangular Form 

Complex number in polar form are convenient for multiplication 
and division, but they cannot be added or subtracted. The reason is 
that changing the angle corresponds to the operation of multiplying 
or dividing. When complex numbers in polar form are to be added 
or subtracted, therefore, they must be converted back into 
rectangular form. 

 

Figure 9 

Converting Polar Form of Z  to Rectangular Form of R ± jX 

(a) Positive Angle  in First Quadrant has + j Term  

(b) Negative Angle - in Fourth Quadrant has -j Term 

Consider the impedance Z in polar form. Its value is the 
hypotenuse of a right triangle with sides formed by the real term 
and j term in rectangular coordinates. See Figure 9. Therefore, the 
polar form can be converted to rectangular form by finding the 
horizontal and vertical sides of the right triangle. Specifically: 

Real term for R = Z cos  

j term for X = Z sin  

In Figure 9a, assume that Z in polar form is 537 . The sine of 37° 
is 0.6 and its cosine is 0.8. 

 To convert to rectangular form: 

R = Z cos  = 5 x 0.8 = 4 

X = Z sin  = 5 x 0.6 = 3 



 

Power Production Test Technician April, 2010  

Training  Page 265 

Therefore, 

537=4 + j3 

This example is the same as the illustration in Figure 8. The + sign 
for the j term means it is XL, not XC. 

In Figure 9b, the values are the same, but the j term is negative 
when  is negative. The negative angle has a negative j term 
because the opposite side is in the fourth quadrant, where the sine 
is negative. However, the real term is still positive because the 
cosine is positive. 

Note that R for cos  is the horizontal phasor, which is an adjacent 
side of the angle. The X for sine  is the vertical phasor, which is 
opposite the angle. The +X is XL; the -X is XC. You can ignore the 
sign of  in calculating sin  and cos  because the values are the 
same up to +90° or down to -90°. 

These rules apply for angles in the first or fourth quadrant, from 0 
to 90° or from 0 to -90°. As examples: 

14.1445  10  j10

14.14  45  10  j10

1090  0  j10

10  90  0  j10

10030 86.6  j50

100  30  86.6  j50

10060  50  j86.6

100  60  50  j86.6

 

When going from one form to the other, keep in mind whether the 
angle is smaller or greater than 45° and if the j term is smaller or 
larger than the real term. 

For angles between 0 and 45°, the opposite side, which is the j term, 
must be smaller than the real term. For angles between 45 and 90°, 
the j term must be larger than the real term. 

To summarize how complex numbers are used in ac circuits in 
rectangular and polar form: 
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1. For addition or subtraction, complex number must be in 
rectangular form. This procedure applies to the addition of 
impedances in a series circuit. If the series impedances are in 
rectangular form, just combine all the real terms and j terms 
separately. If the series impedances are in polar form, they must 
be converted to rectangular form to be added. 

2. For multiplication and division, complex numbers are generally 
used in polar form because the calculations are faster. If the 
complex number is in rectangular form, convert to polar form. 
With the complex number available in both forms then you can 
quickly add or subtract in rectangular form and multiply or 
divide in polar form. Sample problems showing how to apply 
these methods in the analysis of ac circuits are illustrated in the 
following sections. 

Practice Problems — Section 9 

Convert to rectangular form. 

a. 14.1445 . 

b. 14.14  45 . 

Complex Numbers in Series AC Circuits 

Refer to the diagram in Figure 10 on the next page. Although a 
circuit like this with only series resistances and reactances can be 
solved just by phasors, the complex numbers show more details of 
the phase angles. 

ZT in Rectangular Form   

The total ZT in Figure 10a is the sum of the impedances: 

ZT = 2 + j4 + 4 - j12 

= 6 - j8 

The total series impedance then is 6 - j8. Actually, this amounts to 
adding all the series resistances for the real term and finding the 
algebraic sum of all the series reactances for the j term. 
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Figure 10 
Complex Numbers Applied to Series AC Circuits 

(a) Circuit with Series Impedances  (b) Current and Voltages 
(c) Phasor Diagram of Current and Voltages 

ZT in Polar Form  

We can convert ZT from rectangular to polar form as follows: 

ZT  6  j8

 36 64arctan 8/6

 100arctan 1.33

ZT  1053

 

The angle of -53° for ZT means this is the phase angle of the circuit. 
Or the applied voltage and the current are 53° out of phase. 

VT 
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Calculating I   

The reason for the polar form is to divide ZT into the applied 
voltage VT to calculate the current I. See Figure 10b. Note that the 
VT of 20 V is a real number without any j term. Therefore, the 

applied voltage is 200 . This angle of 0° for VT makes it the 
reference phase for the following calculations. We can find the 
current as 

I 
VT

ZT


200

10  53

 20 (53)

I  253A

 

Note that ZT has the negative angle of -53° but the sign changes to 
+53° for I because of the division into a quantity with the angle of 
0°. In general, the reciprocal of an angle in polar form is the same 
angle with opposite sign. 

Phase Angle of the Circuit   

The fact that I has the angle of +53° means it leads VT. The positive 
angle for I shows the series circuit is capacitive, with leading 
current. This angle is more than 45° because the net reactance is 
more than the total resistance, resulting in a tangent function 
greater than 1. 

Finding Each IR Drop   

To calculate the voltage drops around the circuit, each resistance or 
reactance can be multiplied by I: 

VR1
 IR1  253x20  453V

VL  IXL  253x490  8143V

VC  IXC  253x12  90  24  37V

VR2
 IR2  253x40  853V

 

Phase of Each Voltage   

The phasors for these voltages are in Figure 10c. They show the 
phase angles using the applied voltage VT as the zero reference 
phase. 
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The angle of 53° for VR1 and VR2 shows that the voltage across a 
resistance has the same phase as I. These voltages lead VT by 53° 
because of the leading current. 

For VC, its angle of -37° means it lags the generator voltage VT by 
this much. However, this voltage across XC still lags the current by 
90°, which is the difference between 53° and -37°. 

The angle of 143° for VL in the second quadrant is still 90° leading 
the current at 53°, as 143° - 53° = 90°. With respect to the generator 
voltage VT, though, the phase angle of VL is 143°. 

VT Equals the Phasor Sum of the Series Voltage 

Drops   

If we want to add the voltage drops around the circuit to see if they 
equal the applied voltage, each V must be converted to rectangular 
form. Then these values can be added. In rectangular form then the 
individual voltages are 

VR1
 453      2.408 j3.196 V

VL  8143       6.392 j4.816 V

VC  24 - 37   19.176  j14.448 V

VR 2
 853     4.816  j6.392 V

Total V           =   20.008- j0.044V

 

or converting to polar form, 

VT  200V approximately 

Note that for 8143 in the second quadrant, the cosine is negative 
for a negative real term but the sine is positive for a positive j term. 

Practice Problems — Section 10 

Refer to Figure 10. 

a. What is the phase of I to VT? 

b. What is the phase of VL to VT? 

c. What is the phase of VL to VR? 
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Complex Numbers in Parallel AC Circuits 

 

Figure 11 
Complex Numbers Used for Parallel AC Circuit to  

Convert a Parallel Bank to an Equivalent Series Impedance 

A useful application here is converting a parallel circuit to an 
equivalent series circuit. See Figure 11, with a 10- XL in parallel 
with a 10- R. In complex notation, R is 10 + j0 while XL is 0 + j10. 
Their combined parallel impedance ZT equals the product over the 
sum. For Figure 11a, then: 

Z T 
(10  j0)x(0 j10)

(10  j0) (0  j10)


10xj10

10  j10

Z T 
j100

10  j10

 

Converting to polar form for division, 

ZT 
j100

10  j10


10090

14.1445
 7.0745 

Converting to ZT of 7.0745  into rectangular form to see its 
resistive and reactive components, 

Real term = 7.07 cos 45° 

= 7.07 x 0.707 = 5 

j term = 7.07 sin 45° 
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= 7.07 x 0.707 = 5 

Therefore, 

ZT  7.0745 in polar form 

ZT  5 j5 in rectangular form 

The rectangular form of ZT means that 5- R in series with 5- XL 
is the equivalent of 10- R in parallel with 10- XL, as shown in 
Figure 11b. 

Admittance Y and Susceptance B   

In parallel circuits, it is usually easier to add branch currents than 
to combine reciprocal impedances. For this reason, branch 
conductance G is often used instead of branch resistance, where G 
= 1/R. Similarly, reciprocal terms can be defined for complex 
impedances. The two main types are admittance Y, which is the 
reciprocal of impedance, and susceptance B, which is the reciprocal 
of reactance. These reciprocals can be summarized as follows: 

Conductance  G 
1

R
S  

Susceptance  B
1

X
S  

Adm ittance  Y 
1

Z
S  

With R, X, and Z in units of ohms, the reciprocals G, B and Y are in 
siemens (S) units. 

The phase angle for B or Y is the same as current. Therefore, the 
sign is opposite from the angle of X or Z because of the reciprocal 
relation. An inductive branch has suceptance -jB, while a capacitive 
branch has susceptance +jB, with the same angle as branch current. 

With parallel branches of conductance and susceptance the total 
admittance YT = G ± jB. For the two branches in Figure 11a, as an 
example, G is 1/10 or 0.1 and B is also 0.1. In rectangular form. 

YT  0.1 j0.1S 

In polar form, 
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YT  0.14 45S 

This value for YT is the same as IT with 1 V applied across ZT of 
7.0745 . 

As another example, suppose that a parallel circuit has 4  for R in 

one branch and -j4 for XC in the other branch. In rectangular 
form, then, YT is 0.25 + j0.25 S. Also, the polar form is 
YT  0.3545S. 

Practice Problems — Section 11 

a. A Z of 3 + j4 is in parallel with an R of 2. State ZT in 
rectangular form. 

b. Do the same as in Prob. a for XC instead of XL. 

Combining Two Complex Branch Impedances 

A common application is a circuit with two branches Z1 and Z2, 
where each is a complex impedance with both reactance and 
resistance. See Figure 12. A circuit like this can be solved only 
graphically or by complex numbers. Actually, using complex 
numbers is the shortest method. 

 

Figure 12 
Finding ZT For Any Two Complex Impedances  

ZI and Z2 in Parallel 

The procedure here is to find ZT as the product divided by the sum 
for Z1 and Z2. A good way to start is to state each branch 
impedance in both rectangular and polar forms. Then Z1 and Z2 are 
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ready for addition, multiplication, and division. The solution of this 
circuit follows: 

Z 1  6  j81053

Z 2  4  j4 5.66  45
 

The combined impedance 

Z T 
Z1xZ 2

Z 1  Z 2

 

Use the polar form of Z1 and Z2 to multiply, but add in rectangular 
form: 

Z T 
1053x5.66  45

6  j8 4  j4


56.68

10  j4

 

Converting the denominator to polar form for easier division, 

10  j410.822 

Then 

Z T 
56.68

10.822
 

Therefore 

ZT  5.2414  

We can convert ZT into rectangular form. The R component is 5.24 x 
cos (-14°) or 5.24 x 0.97 = 5.08. Note that cos  is positive in the first 
and fourth quadrants. The j component equals 5.24 x sin (-14°) or 
5.24 x (-0.242) = -1.127. In rectangular form, then, 

ZT  5.08- j1.27  

Therefore, this series-parallel circuit combination is equivalent to 
5.08  of R in series with 1.27 of XC. This problem can also be 
done in rectangular form by rationalizing the fraction for ZT. 

Practice Problems — Section 12 

Refer to Figure 12. 
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a. Add (6 + j8) + (4 - j4) for the sum of Z1 and Z2. 

b. Multiply for the 1053x5.66  45product of Z1 
and Z2. 
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Combining Complex Branch Currents 

An example with two branches is shown in Figure 13, to find IT. 
The branch currents can just be added in rectangular form for the 
total IT of parallel branches. This method corresponds to adding 
series impedances in rectangular form to find ZT. The rectangular 
form is necessary for the addition of phasors. 

 

Figure 13 
Fining IT For Two Complex Branch Currents in Parallel 

Adding the branch currents in Figure 13, 

I T  I1  I 2

 (6  j6)  (3 j4)

I T  9  j2 A

 

Note that I1 has +j for the +90° of capacitive current, while I2 has -j 
for inductive current. These current phasors have the opposite 
signs from their reactance phasors. 

In polar form the IT of 9 + j2 A is calculated as the phasor sum of 
the branch currents. 

I T  9 2  2 2

 85  9.22 A

tan  2/9  0.22

  12.53

 

Therefore, IT is 9 + j2 A in rectangular form or 9.2212.53  A in polar 
form. The complex currents for any number of branches can be 
added in rectangular form. 



 

Power Production Test Technician April, 2010  

Training  Page 276 

 



 

Power Production Test Technician April, 2010  

Training  Page 277 

Practice Problems — Section 13 

a. Find IT in rectangular form for I1 of 0 + j2 A and I2 of 4 + 
j3 A. 

b. Find IT in rectangular form for I1 of 6 + j7 A and I2 of 3 - 
j9 A. 

Parallel Circuit with Three Complex Branches 

Because the circuit in Figure 14 has more than two complex 
impedances in parallel, the method of branch currents is used. 
There will be several conversions between rectangular and polar 
form, since addition must be in rectangular form, but division is 
easier in polar form. The sequence of calculations is: 

 

Figure 14 
Finding ZT For Any Three Complex Impedances In Parallel 

1. Convert each branch impedance to polar form. This is necessary 
for dividing into the applied voltage VA to calculate the 
individual branch currents. If VA is not given, any convenient 
value can be assumed. Note that VA has a phase angle of 0° 
because it is the reference. 

2. Convert the individual branch currents from polar to 
rectangular form so that they can be added for the total line 
current. This step is necessary because the resistive and reactive 
components must be added separately. 
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3. Convert the total line current from rectangular to polar form for 
dividing into the applied voltage to calculate ZT. 

4. The total impedance can remain in polar form with its 
magnitude and phase angle, or can be converted to rectangular 
form for its resistive and reactive components. 

These steps are used in the following calculations to solve the 

circuit in Figure 14. All the values are in A, V, or  units. 

Branch Impedances  

Each Z is converted from rectangular form to polar form: 

Z 1  50  j50  70.7  45

Z 2  40  j30 50  37

Z 3  30  j40  50  53

 

Branch Currents   

Each I is calculated at VA divided by Z in polar form: 

I1 
VA

Z1


100

70.7  45
 1.414 45  1 j1

I2 
VA

Z2


100

5037
 2.00  37  1.6  j1.2

I3 
VA

Z3


100

5053
 2.00  53  1.2  j1.6

 

The polar form of each I is converted to rectangular form, for 
addition of the branch currents. 

Total Line Current   

In rectangular form, 

IT = I1 + I2 + I3 

= (1 + j1) + (1.6 - j1.2) + (1.2 - j1.6) 

= 1 + 1.6 + 1.2 + j1 - j1.2 - j1.6 

IT = 3.8 - j1.8 

 Converting 3.8 - j1.8 into polar form, 
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IT  4.2 25.4  
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Total Impedance   

In polar form, 

Z T 
VA

I T


100

4.2  25.4

Z T  23.8  25.4

 

Converting 23.8  25.4  into rectangular form, 

ZT = 21.5 + j10.2 

Therefore, the complex ac circuit in Figure 14 is equivalent to the 

combination of 21.5 of R in series with 10.2 of XL. 

This problem can also be done by combining Z1 and Z2 in parallel 
as Z1Z2/(Z1 + Z2). Then combine this value with Z3 in parallel to 
find the total ZT of the three branches. 

Practice Problems — Section 14 

Refer to Figure 14. 

a. State Z2 in rectangular form for branch 2. 

b. State Z2 in polar form 

c. Find I2. 
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Summary 

1. In complex numbers, resistance R is a real term and reactance is 
a j term. Thus, an 8- R is 8; an 8- XL is j8; an 8- XC is -j8. The 
general form of a complex impedance with series resistance and 
reactance then is Z = R ± jX, in rectangular form. 

2. The same notation can be used for series voltages where V = VR 
± jVX. 

3. For branch currents IT = IR ± jIX, but the reactive branch currents 
have signed opposite from impedances. Capacitive branch 
current is jIC, while inductive branch current is -jIL. 

4. The complex branch currents are added in rectangular form for 
any number of branches to find IT. 

5. To convert from rectangular to polar form: R ± jX = Z . The 

magnitude of Z is R2  X2 . Also,  is the angle with tan = X/R. 

6. To convert to polar to rectangular form, Z  = R ± jX, where R is 
Z cos  and the j term is Z sin . A positive angle has a positive j 
term; a negative angle has a negative j term. Also, the angle is 
more than 45° for a j term larger than the real term; the angle is 
less than 45° for a j term smaller than the real term. 

7. The rectangular form must be used for addition or subtraction 
of complex numbers. 

8. The polar form is usually more convenient in multiplying and 
dividing complex numbers. For multiplication, multiply the 
magnitudes and add the angles; for division, divide the 
magnitudes and subtract the angles. 

9. To find the total impedance ZT of a series circuit, and all the 
resistances for the real term and find the algebraic sum of the 
reactances for the j term. The result is ZT = R ± jX. Then convert 
ZT to polar form for dividing into the applied voltage to 
calculate the current. 

10. To find the total impedance ZT of two complex branch 
impedances Z1 and Z2 in parallel, ZT can be calculated as 
Z1Z2/(Z1 + Z2). 
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Self-Examination 

 Match the values in the column at the left with those at the 
right. 

 1. 24 + j5 + 16 + j10 

2. 24 - j5 + 16 - j10 

3. j12 x 4 

4. j12 x j4 

5. j12 ÷ j3 

6. (4 + j2) x (4 - j2) 

7. 1200 of R + 800 of XC 

8. 5 A of IR + 7 A of IC 

9. 90 V of VR + 60 V of VL 

10. 1428x22  

11. 1428  222 

12. 1542x30 

13. 6 - 75x430  

a. 1450  

b. 76  

c. 1200 - j800 

d. 40 + j15 

e. 90 + j60 V 

f. 4542  

g. 24  45  

h. 4 

I. j48 

j. -48 

k. 5 + j7 A 

l. 20 

m. 40 - j15 
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Essay Questions 

1. Give the mathematical operator for the angles of 0°, 90°, 180°, 
270°, and 360°. 

2. Define the sine, cosine, and tangent functions of an angle. 

3. How are mathematical operators similar for logarithms, 
exponents, and angles? 

4. Compare the following combinations: resistance R and 
conductance G, reactance X and susceptance B, impedance Z 
and admittance Y. 

5. What are the units for admittance Y and susceptance B? 

6. Why do ZT and I1 for a circuit have angles with opposite signs? 
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Problems 

1. State Z in rectangular form for the following series circuits: (a) 

4- R and 3- XC; (b) 4- R and 3- XL; (c) 3- R and 6- XL; 

(d) 3- R and 3- XC. 

2. Draw the schematic diagrams for the impedances in Prob. 1. 

3. Convert the following impedances to polar form: (a) 4 - j3; (b) 4 
+ j3; (c) 3 + j; (d) 3 - j3. 

4. Convert the following impedances to rectangular form: (a) 
5 27 ; (b) 527 ; (c) 6.7163.4; (d) 4.24  45 . 

5. Find the total ZT in rectangular form for the following three 

series impedances: (a) 1210 ; (b) 2515 ; (c) 3426 . 

6. Multiply the following, in polar form: (a) 4524x1054 ; (b) 
45  24x1054; (c) 18  64x414; (d) 18  64x4  14. 

7. Divide the following, in polar form: (a) 4524  1010; (b) 
4524  10  10ˆ ; (c) 500  72  512; (d) 500  72  5  12
. 

8. Match the four phasor diagrams in Figure 4a, b, c, and d with 
the four circuits in Figs. 5 and 6. 

9. Find ZT in polar form for the series circuit in Figure 7a. 

10. Find ZT in polar form for the series-parallel circuit in  
Figure 7c. 

11. Solve the circuit in Figure 12 to find ZT in rectangular form by 
rationalization. 

12. Solve the circuit in Figure 12 to find ZT in polar form, using the 
method of branch currents. Assume an applied voltage of 56.6 
V. 

13. Show the equivalent series circuit of Figure 12. 

14. Solve the circuit in Figure 14 to find ZT in polar form, without 
using branch currents. (Find the Z of two branches in parallel; 
then combine this Z with the third branch Z.) 

15. Show the equivalent series circuit of Figure 14. 
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16. Refer to Figure 13, (a) Find Z1 and Z2 for the two branch 
currents given. (b) Calculate the values needed for R1, R2, XC, 
and XL for these impedances. (c) What are the L and C values 
for a frequency of 60 Hz? 

17. Solve the series ac circuit in Figure 8 in the previous chapter by 

the use of complex numbers. Find Z,I , and each V . 
Prove that the sum of the complex voltage drops around the 
circuit equals the applied voltage VT. Make a phasor diagram 
showing all phase angles with respect to VT. 

18. The following components are in series: L = 100 H, C = 20 pF, 

R = 2000 . At the frequency of 2 MHz calculate XL, XC, ZT, I, , 
VR, VL, and VC. The applied VT = 8 V. 

19. Solve the same circuit as in Prob., 18 for the frequency of 4 
MHz. Give three effects of the higher frequency. 

20. In Figure 15, show that ZT = 4.8  and  = 36.9° by (a) the 
method of branch currents; (b) calculating ZT as Z1Z2/(Z1 + Z2). 

 

Figure 15 

21. In Figure 16, find ZT  by calculating Zbc of the parallel bank 

and combining with the series Zab. 

 

Figure 16 
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Answers to Practice Problems 

Section 1 a. 0° 

   b. 180° 

Section 2 a. 90° 

   b. -90 or 270° 

Section 3 a. T 

   b. T 

Section 4 a. j3 k 

   b. -j5 mA 

Section 5 a. 4 + j7 

   b. 0 - j7 

Section 6 a. 5 + j7 

   b. 4 + j6 

Section 7 a. 14.14 

   b. 45° 

Section 8 a. 1250  

   b. 3  10  

Section 9 a. 10 + j10 

   b. 10 - j10 

Section 10 a. 53° 

   b. 143° 

   c. 90° 

Section 11 a. (6 + j8)/(5 + j4) 

   b. (6 - j8)/(5 - j4) 

Section 12 a. 10 + j4 

   b. 56.68 

Section 13 a. 4 + j5 A 

   b. 9 - j2 A 

Section 14 a. 40 + j30 

   b. 5037 

   c. 2 37A  
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Solutions to Odd Numbered Problems 

1. (a) 4 - j3 

 (b) 4 + j3 

 (c) 3 + j6 

 (d) 3 - j3 

3. (a) 5 37  

 (b) 537  

 (c) 3.1818.5  

 (D) 4.25  45 

5. ZT = 65.36 + J23.48 

7. (A) 4.514  

 (b) 4.534 

 (c) 100  84 

 (d) 100 60  

9. ZT = 12.6518.5  

11. ZT = 5.25  14.7  

13. R = 5.08  

 XC = 1.27  

15. R = 21.4  

 XL = 10.2  

17. ZT = 50  37  = 40 - j30  

 I = 237 = 1.6 + j1.2 A 

 VR = 8037  = 64 + j48V 

 VL = 120127  = -72 + j96 V 

 VC = 180 53  = 108 - j144 V 

19.  ZT = 2.07 k 14.6  k 

 I = 3.88 mA   14.6  mA 

21.  ZT = 13.446.5  

 

 


